Extensions 1→N→G→Q→1 with N=D4⋊S3 and Q=S3

Direct product G=N×Q with N=D4⋊S3 and Q=S3
dρLabelID
S3×D4⋊S3488+S3xD4:S3288,572

Semidirect products G=N:Q with N=D4⋊S3 and Q=S3
extensionφ:Q→Out NdρLabelID
D4⋊S31S3 = Dic63D6φ: S3/C3C2 ⊆ Out D4⋊S3488+D4:S3:1S3288,573
D4⋊S32S3 = D12⋊D6φ: S3/C3C2 ⊆ Out D4⋊S3248+D4:S3:2S3288,574
D4⋊S33S3 = D12.D6φ: S3/C3C2 ⊆ Out D4⋊S3488-D4:S3:3S3288,575
D4⋊S34S3 = D129D6φ: S3/C3C2 ⊆ Out D4⋊S3488-D4:S3:4S3288,580
D4⋊S35S3 = D12.8D6φ: S3/C3C2 ⊆ Out D4⋊S3488-D4:S3:5S3288,584
D4⋊S36S3 = D125D6φ: S3/C3C2 ⊆ Out D4⋊S3248+D4:S3:6S3288,585
D4⋊S37S3 = D12.22D6φ: trivial image488-D4:S3:7S3288,581


׿
×
𝔽