# Extensions 1→N→G→Q→1 with N=C4○D4 and Q=C3×C6

Direct product G=N×Q with N=C4○D4 and Q=C3×C6
dρLabelID
C4○D4×C3×C6144C4oD4xC3xC6288,1021

Semidirect products G=N:Q with N=C4○D4 and Q=C3×C6
extensionφ:Q→Out NdρLabelID
C4○D4⋊(C3×C6) = C3×D4.A4φ: C3×C6/C3C6 ⊆ Out C4○D4484C4oD4:(C3xC6)288,985
C4○D42(C3×C6) = C6×C4.A4φ: C3×C6/C6C3 ⊆ Out C4○D496C4oD4:2(C3xC6)288,983
C4○D43(C3×C6) = C32×C4○D8φ: C3×C6/C32C2 ⊆ Out C4○D4144C4oD4:3(C3xC6)288,832
C4○D44(C3×C6) = C32×C8⋊C22φ: C3×C6/C32C2 ⊆ Out C4○D472C4oD4:4(C3xC6)288,833
C4○D45(C3×C6) = C32×2+ 1+4φ: C3×C6/C32C2 ⊆ Out C4○D472C4oD4:5(C3xC6)288,1022
C4○D46(C3×C6) = C32×2- 1+4φ: C3×C6/C32C2 ⊆ Out C4○D4144C4oD4:6(C3xC6)288,1023

Non-split extensions G=N.Q with N=C4○D4 and Q=C3×C6
extensionφ:Q→Out NdρLabelID
C4○D4.(C3×C6) = C3×Q8.A4φ: C3×C6/C3C6 ⊆ Out C4○D4724C4oD4.(C3xC6)288,984
C4○D4.2(C3×C6) = C3×C8.A4φ: C3×C6/C6C3 ⊆ Out C4○D4962C4oD4.2(C3xC6)288,638
C4○D4.3(C3×C6) = C32×C4≀C2φ: C3×C6/C32C2 ⊆ Out C4○D472C4oD4.3(C3xC6)288,322
C4○D4.4(C3×C6) = C32×C8.C22φ: C3×C6/C32C2 ⊆ Out C4○D4144C4oD4.4(C3xC6)288,834
C4○D4.5(C3×C6) = C32×C8○D4φ: trivial image144C4oD4.5(C3xC6)288,828

׿
×
𝔽