Extensions 1→N→G→Q→1 with N=S3×Dic3 and Q=C4

Direct product G=N×Q with N=S3×Dic3 and Q=C4
dρLabelID
C4×S3×Dic396C4xS3xDic3288,523

Semidirect products G=N:Q with N=S3×Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×Dic3)⋊1C4 = S3×Dic3⋊C4φ: C4/C2C2 ⊆ Out S3×Dic396(S3xDic3):1C4288,524
(S3×Dic3)⋊2C4 = C62.48C23φ: C4/C2C2 ⊆ Out S3×Dic396(S3xDic3):2C4288,526
(S3×Dic3)⋊3C4 = C62.47C23φ: C4/C2C2 ⊆ Out S3×Dic396(S3xDic3):3C4288,525

Non-split extensions G=N.Q with N=S3×Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×Dic3).1C4 = C24⋊D6φ: C4/C2C2 ⊆ Out S3×Dic3484(S3xDic3).1C4288,439
(S3×Dic3).2C4 = S3×C8⋊S3φ: C4/C2C2 ⊆ Out S3×Dic3484(S3xDic3).2C4288,438
(S3×Dic3).3C4 = S32×C8φ: trivial image484(S3xDic3).3C4288,437

׿
×
𝔽