Copied to
clipboard

G = S3×Dic3order 72 = 23·32

Direct product of S3 and Dic3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S3×Dic3, D6.S3, C6.1D6, (C3×S3)⋊C4, C2.1S32, C33(C4×S3), (S3×C6).C2, C322(C2×C4), C3⋊Dic31C2, C31(C2×Dic3), (C3×Dic3)⋊2C2, (C3×C6).1C22, SmallGroup(72,20)

Series: Derived Chief Lower central Upper central

C1C32 — S3×Dic3
C1C3C32C3×C6S3×C6 — S3×Dic3
C32 — S3×Dic3
C1C2

Generators and relations for S3×Dic3
 G = < a,b,c,d | a3=b2=c6=1, d2=c3, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

3C2
3C2
2C3
3C4
3C22
9C4
2C6
3C6
3C6
9C2×C4
3Dic3
3C12
3Dic3
3C2×C6
6Dic3
3C2×Dic3
3C4×S3

Character table of S3×Dic3

 class 12A2B2C3A3B3C4A4B4C4D6A6B6C6D6E12A12B
 size 113322433992246666
ρ1111111111111111111    trivial
ρ211-1-1111-1-111111-1-1-1-1    linear of order 2
ρ311-1-111111-1-1111-1-111    linear of order 2
ρ41111111-1-1-1-111111-1-1    linear of order 2
ρ51-1-11111-ii-ii-1-1-11-1i-i    linear of order 4
ρ61-11-1111i-i-ii-1-1-1-11-ii    linear of order 4
ρ71-11-1111-iii-i-1-1-1-11i-i    linear of order 4
ρ81-1-11111i-ii-i-1-1-11-1-ii    linear of order 4
ρ922002-1-1-2-2002-1-10011    orthogonal lifted from D6
ρ1022-2-2-12-10000-12-11100    orthogonal lifted from D6
ρ1122002-1-122002-1-100-1-1    orthogonal lifted from S3
ρ122222-12-10000-12-1-1-100    orthogonal lifted from S3
ρ132-2-22-12-100001-21-1100    symplectic lifted from Dic3, Schur index 2
ρ142-22-2-12-100001-211-100    symplectic lifted from Dic3, Schur index 2
ρ152-2002-1-12i-2i00-21100i-i    complex lifted from C4×S3
ρ162-2002-1-1-2i2i00-21100-ii    complex lifted from C4×S3
ρ174400-2-210000-2-210000    orthogonal lifted from S32
ρ184-400-2-21000022-10000    symplectic faithful, Schur index 2

Permutation representations of S3×Dic3
On 24 points - transitive group 24T60
Generators in S24
(1 5 3)(2 6 4)(7 9 11)(8 10 12)(13 15 17)(14 16 18)(19 23 21)(20 24 22)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 8 4 11)(2 7 5 10)(3 12 6 9)(13 20 16 23)(14 19 17 22)(15 24 18 21)

G:=sub<Sym(24)| (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,15,17)(14,16,18)(19,23,21)(20,24,22), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,8,4,11)(2,7,5,10)(3,12,6,9)(13,20,16,23)(14,19,17,22)(15,24,18,21)>;

G:=Group( (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,15,17)(14,16,18)(19,23,21)(20,24,22), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,8,4,11)(2,7,5,10)(3,12,6,9)(13,20,16,23)(14,19,17,22)(15,24,18,21) );

G=PermutationGroup([(1,5,3),(2,6,4),(7,9,11),(8,10,12),(13,15,17),(14,16,18),(19,23,21),(20,24,22)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,8,4,11),(2,7,5,10),(3,12,6,9),(13,20,16,23),(14,19,17,22),(15,24,18,21)])

G:=TransitiveGroup(24,60);

S3×Dic3 is a maximal subgroup of
D125S3  D12⋊S3  C4×S32  D6.3D6  D6.4D6  C6.S32  He3⋊(C2×C4)  C339(C2×C4)  Dic3.4S4  D30.S3
S3×Dic3 is a maximal quotient of
D6.Dic3  D6⋊Dic3  Dic3⋊Dic3  C6.S32  C339(C2×C4)  D30.S3

Matrix representation of S3×Dic3 in GL4(𝔽5) generated by

0004
0430
0300
1004
,
0100
1000
0002
0030
,
0001
0030
0310
4001
,
0310
3002
0004
0010
G:=sub<GL(4,GF(5))| [0,0,0,1,0,4,3,0,0,3,0,0,4,0,0,4],[0,1,0,0,1,0,0,0,0,0,0,3,0,0,2,0],[0,0,0,4,0,0,3,0,0,3,1,0,1,0,0,1],[0,3,0,0,3,0,0,0,1,0,0,1,0,2,4,0] >;

S3×Dic3 in GAP, Magma, Sage, TeX

S_3\times {\rm Dic}_3
% in TeX

G:=Group("S3xDic3");
// GroupNames label

G:=SmallGroup(72,20);
// by ID

G=gap.SmallGroup(72,20);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-3,26,168,1204]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^6=1,d^2=c^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of S3×Dic3 in TeX
Character table of S3×Dic3 in TeX

׿
×
𝔽