Extensions 1→N→G→Q→1 with N=C3xGL2(F3) and Q=C2

Direct product G=NxQ with N=C3xGL2(F3) and Q=C2
dρLabelID
C6xGL2(F3)48C6xGL(2,3)288,900

Semidirect products G=N:Q with N=C3xGL2(F3) and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xGL2(F3)):1C2 = GL2(F3):S3φ: C2/C1C2 ⊆ Out C3xGL2(F3)484+(C3xGL(2,3)):1C2288,847
(C3xGL2(F3)):2C2 = D6.S4φ: C2/C1C2 ⊆ Out C3xGL2(F3)484-(C3xGL(2,3)):2C2288,849
(C3xGL2(F3)):3C2 = Dic3.4S4φ: C2/C1C2 ⊆ Out C3xGL2(F3)484(C3xGL(2,3)):3C2288,845
(C3xGL2(F3)):4C2 = S3xGL2(F3)φ: C2/C1C2 ⊆ Out C3xGL2(F3)244(C3xGL(2,3)):4C2288,851
(C3xGL2(F3)):5C2 = C3xQ8.D6φ: C2/C1C2 ⊆ Out C3xGL2(F3)484(C3xGL(2,3)):5C2288,901
(C3xGL2(F3)):6C2 = C3xC4.3S4φ: C2/C1C2 ⊆ Out C3xGL2(F3)484(C3xGL(2,3)):6C2288,904
(C3xGL2(F3)):7C2 = C3xC4.6S4φ: trivial image482(C3xGL(2,3)):7C2288,903


׿
x
:
Z
F
o
wr
Q
<