Copied to
clipboard

G = C6xGL2(F3)  order 288 = 25·32

Direct product of C6 and GL2(F3)

direct product, non-abelian, soluble

Aliases: C6xGL2(F3), Q8:(S3xC6), C2.6(C6xS4), (C6xQ8):3S3, (C3xQ8):3D6, C6.43(C2xS4), (C2xC6).20S4, C22.5(C3xS4), (C6xSL2(F3)):6C2, (C2xSL2(F3)):2C6, SL2(F3):1(C2xC6), (C3xSL2(F3)):9C22, (C2xQ8):1(C3xS3), SmallGroup(288,900)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(F3) — C6xGL2(F3)
C1C2Q8SL2(F3)C3xSL2(F3)C3xGL2(F3) — C6xGL2(F3)
SL2(F3) — C6xGL2(F3)
C1C2xC6

Generators and relations for C6xGL2(F3)
 G = < a,b,c,d,e | a6=b4=d3=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ece=b-1, dbd-1=bc, ebe=b2c, dcd-1=b, ede=d-1 >

Subgroups: 430 in 109 conjugacy classes, 24 normal (16 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C6, C8, C2xC4, D4, Q8, Q8, C23, C32, C12, D6, C2xC6, C2xC6, C2xC8, SD16, C2xD4, C2xQ8, C3xS3, C3xC6, C24, SL2(F3), SL2(F3), C2xC12, C3xD4, C3xQ8, C3xQ8, C22xS3, C22xC6, C2xSD16, S3xC6, C62, C2xC24, C3xSD16, GL2(F3), C2xSL2(F3), C2xSL2(F3), C6xD4, C6xQ8, C3xSL2(F3), S3xC2xC6, C6xSD16, C2xGL2(F3), C3xGL2(F3), C6xSL2(F3), C6xGL2(F3)
Quotients: C1, C2, C3, C22, S3, C6, D6, C2xC6, C3xS3, S4, S3xC6, GL2(F3), C2xS4, C3xS4, C2xGL2(F3), C3xGL2(F3), C6xS4, C6xGL2(F3)

Smallest permutation representation of C6xGL2(F3)
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 47 8 37)(2 48 9 38)(3 43 10 39)(4 44 11 40)(5 45 12 41)(6 46 7 42)(13 27 22 32)(14 28 23 33)(15 29 24 34)(16 30 19 35)(17 25 20 36)(18 26 21 31)
(1 16 8 19)(2 17 9 20)(3 18 10 21)(4 13 11 22)(5 14 12 23)(6 15 7 24)(25 48 36 38)(26 43 31 39)(27 44 32 40)(28 45 33 41)(29 46 34 42)(30 47 35 37)
(13 32 44)(14 33 45)(15 34 46)(16 35 47)(17 36 48)(18 31 43)(19 30 37)(20 25 38)(21 26 39)(22 27 40)(23 28 41)(24 29 42)
(13 40)(14 41)(15 42)(16 37)(17 38)(18 39)(19 47)(20 48)(21 43)(22 44)(23 45)(24 46)(25 36)(26 31)(27 32)(28 33)(29 34)(30 35)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,47,8,37)(2,48,9,38)(3,43,10,39)(4,44,11,40)(5,45,12,41)(6,46,7,42)(13,27,22,32)(14,28,23,33)(15,29,24,34)(16,30,19,35)(17,25,20,36)(18,26,21,31), (1,16,8,19)(2,17,9,20)(3,18,10,21)(4,13,11,22)(5,14,12,23)(6,15,7,24)(25,48,36,38)(26,43,31,39)(27,44,32,40)(28,45,33,41)(29,46,34,42)(30,47,35,37), (13,32,44)(14,33,45)(15,34,46)(16,35,47)(17,36,48)(18,31,43)(19,30,37)(20,25,38)(21,26,39)(22,27,40)(23,28,41)(24,29,42), (13,40)(14,41)(15,42)(16,37)(17,38)(18,39)(19,47)(20,48)(21,43)(22,44)(23,45)(24,46)(25,36)(26,31)(27,32)(28,33)(29,34)(30,35)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,47,8,37)(2,48,9,38)(3,43,10,39)(4,44,11,40)(5,45,12,41)(6,46,7,42)(13,27,22,32)(14,28,23,33)(15,29,24,34)(16,30,19,35)(17,25,20,36)(18,26,21,31), (1,16,8,19)(2,17,9,20)(3,18,10,21)(4,13,11,22)(5,14,12,23)(6,15,7,24)(25,48,36,38)(26,43,31,39)(27,44,32,40)(28,45,33,41)(29,46,34,42)(30,47,35,37), (13,32,44)(14,33,45)(15,34,46)(16,35,47)(17,36,48)(18,31,43)(19,30,37)(20,25,38)(21,26,39)(22,27,40)(23,28,41)(24,29,42), (13,40)(14,41)(15,42)(16,37)(17,38)(18,39)(19,47)(20,48)(21,43)(22,44)(23,45)(24,46)(25,36)(26,31)(27,32)(28,33)(29,34)(30,35) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,47,8,37),(2,48,9,38),(3,43,10,39),(4,44,11,40),(5,45,12,41),(6,46,7,42),(13,27,22,32),(14,28,23,33),(15,29,24,34),(16,30,19,35),(17,25,20,36),(18,26,21,31)], [(1,16,8,19),(2,17,9,20),(3,18,10,21),(4,13,11,22),(5,14,12,23),(6,15,7,24),(25,48,36,38),(26,43,31,39),(27,44,32,40),(28,45,33,41),(29,46,34,42),(30,47,35,37)], [(13,32,44),(14,33,45),(15,34,46),(16,35,47),(17,36,48),(18,31,43),(19,30,37),(20,25,38),(21,26,39),(22,27,40),(23,28,41),(24,29,42)], [(13,40),(14,41),(15,42),(16,37),(17,38),(18,39),(19,47),(20,48),(21,43),(22,44),(23,45),(24,46),(25,36),(26,31),(27,32),(28,33),(29,34),(30,35)]])

48 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D3E4A4B6A···6F6G···6O6P6Q6R6S8A8B8C8D12A12B12C12D24A···24H
order12222233333446···66···6666688881212121224···24
size1111121211888661···18···812121212666666666···6

48 irreducible representations

dim111111222222333344
type++++++++
imageC1C2C2C3C6C6S3D6C3xS3S3xC6GL2(F3)C3xGL2(F3)S4C2xS4C3xS4C6xS4GL2(F3)C3xGL2(F3)
kernelC6xGL2(F3)C3xGL2(F3)C6xSL2(F3)C2xGL2(F3)GL2(F3)C2xSL2(F3)C6xQ8C3xQ8C2xQ8Q8C6C2C2xC6C6C22C2C6C2
# reps121242112248224424

Matrix representation of C6xGL2(F3) in GL3(F73) generated by

7200
0650
0065
,
100
03252
02141
,
100
02052
03353
,
100
05232
05320
,
7200
010
07272
G:=sub<GL(3,GF(73))| [72,0,0,0,65,0,0,0,65],[1,0,0,0,32,21,0,52,41],[1,0,0,0,20,33,0,52,53],[1,0,0,0,52,53,0,32,20],[72,0,0,0,1,72,0,0,72] >;

C6xGL2(F3) in GAP, Magma, Sage, TeX

C_6\times {\rm GL}_2({\mathbb F}_3)
% in TeX

G:=Group("C6xGL(2,3)");
// GroupNames label

G:=SmallGroup(288,900);
// by ID

G=gap.SmallGroup(288,900);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,2,-2,675,2524,655,172,1517,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^4=d^3=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*c*e=b^-1,d*b*d^-1=b*c,e*b*e=b^2*c,d*c*d^-1=b,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<