Extensions 1→N→G→Q→1 with N=Dic9 and Q=C2×C4

Direct product G=N×Q with N=Dic9 and Q=C2×C4
dρLabelID
C2×C4×Dic9288C2xC4xDic9288,132

Semidirect products G=N:Q with N=Dic9 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
Dic91(C2×C4) = Dic94D4φ: C2×C4/C4C2 ⊆ Out Dic9144Dic9:1(C2xC4)288,91
Dic92(C2×C4) = C4×C9⋊D4φ: C2×C4/C4C2 ⊆ Out Dic9144Dic9:2(C2xC4)288,138
Dic93(C2×C4) = C4⋊C4×D9φ: C2×C4/C22C2 ⊆ Out Dic9144Dic9:3(C2xC4)288,101
Dic94(C2×C4) = C2×Dic9⋊C4φ: C2×C4/C22C2 ⊆ Out Dic9288Dic9:4(C2xC4)288,133
Dic95(C2×C4) = C42×D9φ: trivial image144Dic9:5(C2xC4)288,81

Non-split extensions G=N.Q with N=Dic9 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
Dic9.1(C2×C4) = C4×Dic18φ: C2×C4/C4C2 ⊆ Out Dic9288Dic9.1(C2xC4)288,78
Dic9.2(C2×C4) = Dic93Q8φ: C2×C4/C4C2 ⊆ Out Dic9288Dic9.2(C2xC4)288,97
Dic9.3(C2×C4) = D36.2C4φ: C2×C4/C4C2 ⊆ Out Dic91442Dic9.3(C2xC4)288,112
Dic9.4(C2×C4) = D36.C4φ: C2×C4/C4C2 ⊆ Out Dic91444Dic9.4(C2xC4)288,117
Dic9.5(C2×C4) = C422D9φ: C2×C4/C22C2 ⊆ Out Dic9144Dic9.5(C2xC4)288,82
Dic9.6(C2×C4) = C23.16D18φ: C2×C4/C22C2 ⊆ Out Dic9144Dic9.6(C2xC4)288,87
Dic9.7(C2×C4) = C2×C8⋊D9φ: C2×C4/C22C2 ⊆ Out Dic9144Dic9.7(C2xC4)288,111
Dic9.8(C2×C4) = M4(2)×D9φ: C2×C4/C22C2 ⊆ Out Dic9724Dic9.8(C2xC4)288,116
Dic9.9(C2×C4) = C4⋊C47D9φ: trivial image144Dic9.9(C2xC4)288,102
Dic9.10(C2×C4) = C2×C8×D9φ: trivial image144Dic9.10(C2xC4)288,110

׿
×
𝔽