Copied to
clipboard

G = Dic94D4order 288 = 25·32

1st semidirect product of Dic9 and D4 acting through Inn(Dic9)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic94D4, C23.19D18, C9⋊D4⋊C4, C92(C4×D4), C2.2(D4×D9), D18⋊C49C2, D182(C2×C4), C22⋊C47D9, C6.78(S3×D4), C222(C4×D9), Dic9⋊C49C2, Dic91(C2×C4), C18.18(C2×D4), (C2×C4).25D18, (C4×Dic9)⋊11C2, (C2×C12).177D6, C18.7(C22×C4), (C22×C6).41D6, C18.22(C4○D4), C2.2(D42D9), C3.(Dic34D4), (C2×C18).22C23, (C2×C36).54C22, (C22×Dic9)⋊1C2, C6.75(D42S3), C22.14(C22×D9), (C22×C18).11C22, (C2×Dic9).26C22, (C22×D9).16C22, (C2×C4×D9)⋊9C2, C2.9(C2×C4×D9), C6.46(S3×C2×C4), (C2×C18)⋊2(C2×C4), (C2×C6).7(C4×S3), (C9×C22⋊C4)⋊9C2, (C2×C9⋊D4).2C2, (C3×C22⋊C4).13S3, (C2×C6).179(C22×S3), SmallGroup(288,91)

Series: Derived Chief Lower central Upper central

C1C18 — Dic94D4
C1C3C9C18C2×C18C22×D9C2×C9⋊D4 — Dic94D4
C9C18 — Dic94D4
C1C22C22⋊C4

Generators and relations for Dic94D4
 G = < a,b,c,d | a18=c4=d2=1, b2=a9, bab-1=cac-1=a-1, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 576 in 141 conjugacy classes, 54 normal (38 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, C9, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, D9, C18, C18, C4×S3, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C4×D4, Dic9, Dic9, C36, D18, D18, C2×C18, C2×C18, C2×C18, C4×Dic3, Dic3⋊C4, D6⋊C4, C3×C22⋊C4, S3×C2×C4, C22×Dic3, C2×C3⋊D4, C4×D9, C2×Dic9, C2×Dic9, C9⋊D4, C2×C36, C22×D9, C22×C18, Dic34D4, C4×Dic9, Dic9⋊C4, D18⋊C4, C9×C22⋊C4, C2×C4×D9, C22×Dic9, C2×C9⋊D4, Dic94D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22×C4, C2×D4, C4○D4, D9, C4×S3, C22×S3, C4×D4, D18, S3×C2×C4, S3×D4, D42S3, C4×D9, C22×D9, Dic34D4, C2×C4×D9, D4×D9, D42D9, Dic94D4

Smallest permutation representation of Dic94D4
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 143 10 134)(2 142 11 133)(3 141 12 132)(4 140 13 131)(5 139 14 130)(6 138 15 129)(7 137 16 128)(8 136 17 127)(9 135 18 144)(19 117 28 126)(20 116 29 125)(21 115 30 124)(22 114 31 123)(23 113 32 122)(24 112 33 121)(25 111 34 120)(26 110 35 119)(27 109 36 118)(37 77 46 86)(38 76 47 85)(39 75 48 84)(40 74 49 83)(41 73 50 82)(42 90 51 81)(43 89 52 80)(44 88 53 79)(45 87 54 78)(55 105 64 96)(56 104 65 95)(57 103 66 94)(58 102 67 93)(59 101 68 92)(60 100 69 91)(61 99 70 108)(62 98 71 107)(63 97 72 106)
(1 43 34 107)(2 42 35 106)(3 41 36 105)(4 40 19 104)(5 39 20 103)(6 38 21 102)(7 37 22 101)(8 54 23 100)(9 53 24 99)(10 52 25 98)(11 51 26 97)(12 50 27 96)(13 49 28 95)(14 48 29 94)(15 47 30 93)(16 46 31 92)(17 45 32 91)(18 44 33 108)(55 132 82 109)(56 131 83 126)(57 130 84 125)(58 129 85 124)(59 128 86 123)(60 127 87 122)(61 144 88 121)(62 143 89 120)(63 142 90 119)(64 141 73 118)(65 140 74 117)(66 139 75 116)(67 138 76 115)(68 137 77 114)(69 136 78 113)(70 135 79 112)(71 134 80 111)(72 133 81 110)
(1 107)(2 108)(3 91)(4 92)(5 93)(6 94)(7 95)(8 96)(9 97)(10 98)(11 99)(12 100)(13 101)(14 102)(15 103)(16 104)(17 105)(18 106)(19 46)(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)(28 37)(29 38)(30 39)(31 40)(32 41)(33 42)(34 43)(35 44)(36 45)(55 136)(56 137)(57 138)(58 139)(59 140)(60 141)(61 142)(62 143)(63 144)(64 127)(65 128)(66 129)(67 130)(68 131)(69 132)(70 133)(71 134)(72 135)(73 122)(74 123)(75 124)(76 125)(77 126)(78 109)(79 110)(80 111)(81 112)(82 113)(83 114)(84 115)(85 116)(86 117)(87 118)(88 119)(89 120)(90 121)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,143,10,134)(2,142,11,133)(3,141,12,132)(4,140,13,131)(5,139,14,130)(6,138,15,129)(7,137,16,128)(8,136,17,127)(9,135,18,144)(19,117,28,126)(20,116,29,125)(21,115,30,124)(22,114,31,123)(23,113,32,122)(24,112,33,121)(25,111,34,120)(26,110,35,119)(27,109,36,118)(37,77,46,86)(38,76,47,85)(39,75,48,84)(40,74,49,83)(41,73,50,82)(42,90,51,81)(43,89,52,80)(44,88,53,79)(45,87,54,78)(55,105,64,96)(56,104,65,95)(57,103,66,94)(58,102,67,93)(59,101,68,92)(60,100,69,91)(61,99,70,108)(62,98,71,107)(63,97,72,106), (1,43,34,107)(2,42,35,106)(3,41,36,105)(4,40,19,104)(5,39,20,103)(6,38,21,102)(7,37,22,101)(8,54,23,100)(9,53,24,99)(10,52,25,98)(11,51,26,97)(12,50,27,96)(13,49,28,95)(14,48,29,94)(15,47,30,93)(16,46,31,92)(17,45,32,91)(18,44,33,108)(55,132,82,109)(56,131,83,126)(57,130,84,125)(58,129,85,124)(59,128,86,123)(60,127,87,122)(61,144,88,121)(62,143,89,120)(63,142,90,119)(64,141,73,118)(65,140,74,117)(66,139,75,116)(67,138,76,115)(68,137,77,114)(69,136,78,113)(70,135,79,112)(71,134,80,111)(72,133,81,110), (1,107)(2,108)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,97)(10,98)(11,99)(12,100)(13,101)(14,102)(15,103)(16,104)(17,105)(18,106)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135)(73,122)(74,123)(75,124)(76,125)(77,126)(78,109)(79,110)(80,111)(81,112)(82,113)(83,114)(84,115)(85,116)(86,117)(87,118)(88,119)(89,120)(90,121)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,143,10,134)(2,142,11,133)(3,141,12,132)(4,140,13,131)(5,139,14,130)(6,138,15,129)(7,137,16,128)(8,136,17,127)(9,135,18,144)(19,117,28,126)(20,116,29,125)(21,115,30,124)(22,114,31,123)(23,113,32,122)(24,112,33,121)(25,111,34,120)(26,110,35,119)(27,109,36,118)(37,77,46,86)(38,76,47,85)(39,75,48,84)(40,74,49,83)(41,73,50,82)(42,90,51,81)(43,89,52,80)(44,88,53,79)(45,87,54,78)(55,105,64,96)(56,104,65,95)(57,103,66,94)(58,102,67,93)(59,101,68,92)(60,100,69,91)(61,99,70,108)(62,98,71,107)(63,97,72,106), (1,43,34,107)(2,42,35,106)(3,41,36,105)(4,40,19,104)(5,39,20,103)(6,38,21,102)(7,37,22,101)(8,54,23,100)(9,53,24,99)(10,52,25,98)(11,51,26,97)(12,50,27,96)(13,49,28,95)(14,48,29,94)(15,47,30,93)(16,46,31,92)(17,45,32,91)(18,44,33,108)(55,132,82,109)(56,131,83,126)(57,130,84,125)(58,129,85,124)(59,128,86,123)(60,127,87,122)(61,144,88,121)(62,143,89,120)(63,142,90,119)(64,141,73,118)(65,140,74,117)(66,139,75,116)(67,138,76,115)(68,137,77,114)(69,136,78,113)(70,135,79,112)(71,134,80,111)(72,133,81,110), (1,107)(2,108)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,97)(10,98)(11,99)(12,100)(13,101)(14,102)(15,103)(16,104)(17,105)(18,106)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,127)(65,128)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135)(73,122)(74,123)(75,124)(76,125)(77,126)(78,109)(79,110)(80,111)(81,112)(82,113)(83,114)(84,115)(85,116)(86,117)(87,118)(88,119)(89,120)(90,121) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,143,10,134),(2,142,11,133),(3,141,12,132),(4,140,13,131),(5,139,14,130),(6,138,15,129),(7,137,16,128),(8,136,17,127),(9,135,18,144),(19,117,28,126),(20,116,29,125),(21,115,30,124),(22,114,31,123),(23,113,32,122),(24,112,33,121),(25,111,34,120),(26,110,35,119),(27,109,36,118),(37,77,46,86),(38,76,47,85),(39,75,48,84),(40,74,49,83),(41,73,50,82),(42,90,51,81),(43,89,52,80),(44,88,53,79),(45,87,54,78),(55,105,64,96),(56,104,65,95),(57,103,66,94),(58,102,67,93),(59,101,68,92),(60,100,69,91),(61,99,70,108),(62,98,71,107),(63,97,72,106)], [(1,43,34,107),(2,42,35,106),(3,41,36,105),(4,40,19,104),(5,39,20,103),(6,38,21,102),(7,37,22,101),(8,54,23,100),(9,53,24,99),(10,52,25,98),(11,51,26,97),(12,50,27,96),(13,49,28,95),(14,48,29,94),(15,47,30,93),(16,46,31,92),(17,45,32,91),(18,44,33,108),(55,132,82,109),(56,131,83,126),(57,130,84,125),(58,129,85,124),(59,128,86,123),(60,127,87,122),(61,144,88,121),(62,143,89,120),(63,142,90,119),(64,141,73,118),(65,140,74,117),(66,139,75,116),(67,138,76,115),(68,137,77,114),(69,136,78,113),(70,135,79,112),(71,134,80,111),(72,133,81,110)], [(1,107),(2,108),(3,91),(4,92),(5,93),(6,94),(7,95),(8,96),(9,97),(10,98),(11,99),(12,100),(13,101),(14,102),(15,103),(16,104),(17,105),(18,106),(19,46),(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54),(28,37),(29,38),(30,39),(31,40),(32,41),(33,42),(34,43),(35,44),(36,45),(55,136),(56,137),(57,138),(58,139),(59,140),(60,141),(61,142),(62,143),(63,144),(64,127),(65,128),(66,129),(67,130),(68,131),(69,132),(70,133),(71,134),(72,135),(73,122),(74,123),(75,124),(76,125),(77,126),(78,109),(79,110),(80,111),(81,112),(82,113),(83,114),(84,115),(85,116),(86,117),(87,118),(88,119),(89,120),(90,121)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J4K4L6A6B6C6D6E9A9B9C12A12B12C12D18A···18I18J···18O36A···36L
order122222223444444444444666669991212121218···1818···1836···36
size1111221818222229999181818182224422244442···24···44···4

60 irreducible representations

dim11111111122222222224444
type++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C4S3D4D6D6C4○D4D9C4×S3D18D18C4×D9S3×D4D42S3D4×D9D42D9
kernelDic94D4C4×Dic9Dic9⋊C4D18⋊C4C9×C22⋊C4C2×C4×D9C22×Dic9C2×C9⋊D4C9⋊D4C3×C22⋊C4Dic9C2×C12C22×C6C18C22⋊C4C2×C6C2×C4C23C22C6C6C2C2
# reps111111118122123463121133

Matrix representation of Dic94D4 in GL4(𝔽37) generated by

113100
61700
0010
0001
,
9100
292800
00360
00036
,
203100
111700
00223
001115
,
1000
0100
00223
002415
G:=sub<GL(4,GF(37))| [11,6,0,0,31,17,0,0,0,0,1,0,0,0,0,1],[9,29,0,0,1,28,0,0,0,0,36,0,0,0,0,36],[20,11,0,0,31,17,0,0,0,0,22,11,0,0,3,15],[1,0,0,0,0,1,0,0,0,0,22,24,0,0,3,15] >;

Dic94D4 in GAP, Magma, Sage, TeX

{\rm Dic}_9\rtimes_4D_4
% in TeX

G:=Group("Dic9:4D4");
// GroupNames label

G:=SmallGroup(288,91);
// by ID

G=gap.SmallGroup(288,91);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,219,58,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^18=c^4=d^2=1,b^2=a^9,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽