Extensions 1→N→G→Q→1 with N=C12 and Q=C3⋊C8

Direct product G=N×Q with N=C12 and Q=C3⋊C8
dρLabelID
C12×C3⋊C896C12xC3:C8288,236

Semidirect products G=N:Q with N=C12 and Q=C3⋊C8
extensionφ:Q→Aut NdρLabelID
C121(C3⋊C8) = C12.57D12φ: C3⋊C8/C12C2 ⊆ Aut C12288C12:1(C3:C8)288,279
C122(C3⋊C8) = C4×C324C8φ: C3⋊C8/C12C2 ⊆ Aut C12288C12:2(C3:C8)288,277
C123(C3⋊C8) = C3×C12⋊C8φ: C3⋊C8/C12C2 ⊆ Aut C1296C12:3(C3:C8)288,238

Non-split extensions G=N.Q with N=C12 and Q=C3⋊C8
extensionφ:Q→Aut NdρLabelID
C12.1(C3⋊C8) = C36⋊C8φ: C3⋊C8/C12C2 ⊆ Aut C12288C12.1(C3:C8)288,11
C12.2(C3⋊C8) = C36.C8φ: C3⋊C8/C12C2 ⊆ Aut C121442C12.2(C3:C8)288,19
C12.3(C3⋊C8) = C24.94D6φ: C3⋊C8/C12C2 ⊆ Aut C12144C12.3(C3:C8)288,287
C12.4(C3⋊C8) = C9⋊C32φ: C3⋊C8/C12C2 ⊆ Aut C122882C12.4(C3:C8)288,1
C12.5(C3⋊C8) = C4×C9⋊C8φ: C3⋊C8/C12C2 ⊆ Aut C12288C12.5(C3:C8)288,9
C12.6(C3⋊C8) = C2×C9⋊C16φ: C3⋊C8/C12C2 ⊆ Aut C12288C12.6(C3:C8)288,18
C12.7(C3⋊C8) = C48.S3φ: C3⋊C8/C12C2 ⊆ Aut C12288C12.7(C3:C8)288,65
C12.8(C3⋊C8) = C2×C24.S3φ: C3⋊C8/C12C2 ⊆ Aut C12288C12.8(C3:C8)288,286
C12.9(C3⋊C8) = C3×C12.C8φ: C3⋊C8/C12C2 ⊆ Aut C12482C12.9(C3:C8)288,246
C12.10(C3⋊C8) = C3×C3⋊C32central extension (φ=1)962C12.10(C3:C8)288,64
C12.11(C3⋊C8) = C6×C3⋊C16central extension (φ=1)96C12.11(C3:C8)288,245

׿
×
𝔽