direct product, metacyclic, supersoluble, monomial
Aliases: C3×C12.C8, C24.6C12, C12.1C24, C62.7C8, C24.100D6, C32⋊9M5(2), C24.14Dic3, C3⋊C16⋊5C6, C12.9(C3⋊C8), C8.22(S3×C6), (C2×C6).6C24, (C3×C12).8C8, C6.9(C2×C24), (C2×C24).22C6, (C6×C24).24C2, (C2×C24).35S3, (C3×C24).13C4, C24.35(C2×C6), (C6×C12).26C4, C3⋊2(C3×M5(2)), C8.2(C3×Dic3), C12.46(C2×C12), (C2×C12).13C12, C4.10(C6×Dic3), (C3×C24).67C22, C12.67(C2×Dic3), (C2×C12).28Dic3, C4.(C3×C3⋊C8), C2.4(C6×C3⋊C8), C22.(C3×C3⋊C8), C6.20(C2×C3⋊C8), (C3×C3⋊C16)⋊12C2, (C2×C6).2(C3⋊C8), (C2×C8).7(C3×S3), (C3×C6).40(C2×C8), (C2×C4).5(C3×Dic3), (C3×C12).131(C2×C4), SmallGroup(288,246)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C12.C8
G = < a,b,c | a3=b24=1, c4=b18, ab=ba, ac=ca, cbc-1=b5 >
Subgroups: 90 in 63 conjugacy classes, 42 normal (38 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C8, C2×C4, C32, C12, C12, C2×C6, C2×C6, C16, C2×C8, C3×C6, C3×C6, C24, C24, C2×C12, C2×C12, M5(2), C3×C12, C62, C3⋊C16, C48, C2×C24, C2×C24, C3×C24, C6×C12, C12.C8, C3×M5(2), C3×C3⋊C16, C6×C24, C3×C12.C8
Quotients: C1, C2, C3, C4, C22, S3, C6, C8, C2×C4, Dic3, C12, D6, C2×C6, C2×C8, C3×S3, C3⋊C8, C24, C2×Dic3, C2×C12, M5(2), C3×Dic3, S3×C6, C2×C3⋊C8, C2×C24, C3×C3⋊C8, C6×Dic3, C12.C8, C3×M5(2), C6×C3⋊C8, C3×C12.C8
(1 17 9)(2 18 10)(3 19 11)(4 20 12)(5 21 13)(6 22 14)(7 23 15)(8 24 16)(25 33 41)(26 34 42)(27 35 43)(28 36 44)(29 37 45)(30 38 46)(31 39 47)(32 40 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 37 10 34 19 31 4 28 13 25 22 46 7 43 16 40)(2 42 11 39 20 36 5 33 14 30 23 27 8 48 17 45)(3 47 12 44 21 41 6 38 15 35 24 32 9 29 18 26)
G:=sub<Sym(48)| (1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,33,41)(26,34,42)(27,35,43)(28,36,44)(29,37,45)(30,38,46)(31,39,47)(32,40,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,37,10,34,19,31,4,28,13,25,22,46,7,43,16,40)(2,42,11,39,20,36,5,33,14,30,23,27,8,48,17,45)(3,47,12,44,21,41,6,38,15,35,24,32,9,29,18,26)>;
G:=Group( (1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,33,41)(26,34,42)(27,35,43)(28,36,44)(29,37,45)(30,38,46)(31,39,47)(32,40,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,37,10,34,19,31,4,28,13,25,22,46,7,43,16,40)(2,42,11,39,20,36,5,33,14,30,23,27,8,48,17,45)(3,47,12,44,21,41,6,38,15,35,24,32,9,29,18,26) );
G=PermutationGroup([[(1,17,9),(2,18,10),(3,19,11),(4,20,12),(5,21,13),(6,22,14),(7,23,15),(8,24,16),(25,33,41),(26,34,42),(27,35,43),(28,36,44),(29,37,45),(30,38,46),(31,39,47),(32,40,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,37,10,34,19,31,4,28,13,25,22,46,7,43,16,40),(2,42,11,39,20,36,5,33,14,30,23,27,8,48,17,45),(3,47,12,44,21,41,6,38,15,35,24,32,9,29,18,26)]])
108 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 6A | 6B | 6C | ··· | 6M | 8A | 8B | 8C | 8D | 8E | 8F | 12A | 12B | 12C | 12D | 12E | ··· | 12R | 16A | ··· | 16H | 24A | ··· | 24H | 24I | ··· | 24AJ | 48A | ··· | 48P |
order | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 16 | ··· | 16 | 24 | ··· | 24 | 24 | ··· | 24 | 48 | ··· | 48 |
size | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 6 | ··· | 6 | 1 | ··· | 1 | 2 | ··· | 2 | 6 | ··· | 6 |
108 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | - | |||||||||||||||||||||||
image | C1 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C8 | C8 | C12 | C12 | C24 | C24 | S3 | Dic3 | D6 | Dic3 | C3×S3 | C3⋊C8 | C3⋊C8 | M5(2) | C3×Dic3 | S3×C6 | C3×Dic3 | C3×C3⋊C8 | C3×C3⋊C8 | C12.C8 | C3×M5(2) | C3×C12.C8 |
kernel | C3×C12.C8 | C3×C3⋊C16 | C6×C24 | C12.C8 | C3×C24 | C6×C12 | C3⋊C16 | C2×C24 | C3×C12 | C62 | C24 | C2×C12 | C12 | C2×C6 | C2×C24 | C24 | C24 | C2×C12 | C2×C8 | C12 | C2×C6 | C32 | C8 | C8 | C2×C4 | C4 | C22 | C3 | C3 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 16 |
Matrix representation of C3×C12.C8 ►in GL2(𝔽97) generated by
61 | 0 |
0 | 61 |
43 | 0 |
0 | 93 |
0 | 1 |
50 | 0 |
G:=sub<GL(2,GF(97))| [61,0,0,61],[43,0,0,93],[0,50,1,0] >;
C3×C12.C8 in GAP, Magma, Sage, TeX
C_3\times C_{12}.C_8
% in TeX
G:=Group("C3xC12.C8");
// GroupNames label
G:=SmallGroup(288,246);
// by ID
G=gap.SmallGroup(288,246);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-3,84,701,80,102,9414]);
// Polycyclic
G:=Group<a,b,c|a^3=b^24=1,c^4=b^18,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations