Copied to
clipboard

G = C6×C3⋊C16order 288 = 25·32

Direct product of C6 and C3⋊C16

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C6×C3⋊C16, C6⋊C48, C24.5C12, C12.3C24, C24.99D6, C62.6C8, C24.16Dic3, (C3×C6)⋊3C16, C32(C2×C48), C8.21(S3×C6), (C2×C6).5C24, C6.8(C2×C24), C329(C2×C16), C12.11(C3⋊C8), (C2×C24).37S3, (C3×C12).11C8, (C3×C24).10C4, (C6×C12).29C4, C24.34(C2×C6), (C2×C24).21C6, (C6×C24).18C2, C4.9(C6×Dic3), C8.4(C3×Dic3), (C2×C12).16C12, C12.45(C2×C12), (C3×C24).66C22, C12.66(C2×Dic3), (C2×C12).31Dic3, C4.3(C3×C3⋊C8), C2.2(C6×C3⋊C8), C6.19(C2×C3⋊C8), (C2×C6).9(C3⋊C8), (C2×C8).9(C3×S3), C22.2(C3×C3⋊C8), (C3×C6).39(C2×C8), (C2×C4).8(C3×Dic3), (C3×C12).130(C2×C4), SmallGroup(288,245)

Series: Derived Chief Lower central Upper central

C1C3 — C6×C3⋊C16
C1C3C6C12C24C3×C24C3×C3⋊C16 — C6×C3⋊C16
C3 — C6×C3⋊C16
C1C2×C24

Generators and relations for C6×C3⋊C16
 G = < a,b,c | a6=b3=c16=1, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 90 in 67 conjugacy classes, 50 normal (38 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C8, C2×C4, C32, C12, C12, C2×C6, C2×C6, C16, C2×C8, C3×C6, C3×C6, C24, C24, C2×C12, C2×C12, C2×C16, C3×C12, C62, C3⋊C16, C48, C2×C24, C2×C24, C3×C24, C6×C12, C2×C3⋊C16, C2×C48, C3×C3⋊C16, C6×C24, C6×C3⋊C16
Quotients: C1, C2, C3, C4, C22, S3, C6, C8, C2×C4, Dic3, C12, D6, C2×C6, C16, C2×C8, C3×S3, C3⋊C8, C24, C2×Dic3, C2×C12, C2×C16, C3×Dic3, S3×C6, C3⋊C16, C48, C2×C3⋊C8, C2×C24, C3×C3⋊C8, C6×Dic3, C2×C3⋊C16, C2×C48, C3×C3⋊C16, C6×C3⋊C8, C6×C3⋊C16

Smallest permutation representation of C6×C3⋊C16
On 96 points
Generators in S96
(1 24 75 62 33 82)(2 25 76 63 34 83)(3 26 77 64 35 84)(4 27 78 49 36 85)(5 28 79 50 37 86)(6 29 80 51 38 87)(7 30 65 52 39 88)(8 31 66 53 40 89)(9 32 67 54 41 90)(10 17 68 55 42 91)(11 18 69 56 43 92)(12 19 70 57 44 93)(13 20 71 58 45 94)(14 21 72 59 46 95)(15 22 73 60 47 96)(16 23 74 61 48 81)
(1 75 33)(2 34 76)(3 77 35)(4 36 78)(5 79 37)(6 38 80)(7 65 39)(8 40 66)(9 67 41)(10 42 68)(11 69 43)(12 44 70)(13 71 45)(14 46 72)(15 73 47)(16 48 74)(17 91 55)(18 56 92)(19 93 57)(20 58 94)(21 95 59)(22 60 96)(23 81 61)(24 62 82)(25 83 63)(26 64 84)(27 85 49)(28 50 86)(29 87 51)(30 52 88)(31 89 53)(32 54 90)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,24,75,62,33,82)(2,25,76,63,34,83)(3,26,77,64,35,84)(4,27,78,49,36,85)(5,28,79,50,37,86)(6,29,80,51,38,87)(7,30,65,52,39,88)(8,31,66,53,40,89)(9,32,67,54,41,90)(10,17,68,55,42,91)(11,18,69,56,43,92)(12,19,70,57,44,93)(13,20,71,58,45,94)(14,21,72,59,46,95)(15,22,73,60,47,96)(16,23,74,61,48,81), (1,75,33)(2,34,76)(3,77,35)(4,36,78)(5,79,37)(6,38,80)(7,65,39)(8,40,66)(9,67,41)(10,42,68)(11,69,43)(12,44,70)(13,71,45)(14,46,72)(15,73,47)(16,48,74)(17,91,55)(18,56,92)(19,93,57)(20,58,94)(21,95,59)(22,60,96)(23,81,61)(24,62,82)(25,83,63)(26,64,84)(27,85,49)(28,50,86)(29,87,51)(30,52,88)(31,89,53)(32,54,90), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)>;

G:=Group( (1,24,75,62,33,82)(2,25,76,63,34,83)(3,26,77,64,35,84)(4,27,78,49,36,85)(5,28,79,50,37,86)(6,29,80,51,38,87)(7,30,65,52,39,88)(8,31,66,53,40,89)(9,32,67,54,41,90)(10,17,68,55,42,91)(11,18,69,56,43,92)(12,19,70,57,44,93)(13,20,71,58,45,94)(14,21,72,59,46,95)(15,22,73,60,47,96)(16,23,74,61,48,81), (1,75,33)(2,34,76)(3,77,35)(4,36,78)(5,79,37)(6,38,80)(7,65,39)(8,40,66)(9,67,41)(10,42,68)(11,69,43)(12,44,70)(13,71,45)(14,46,72)(15,73,47)(16,48,74)(17,91,55)(18,56,92)(19,93,57)(20,58,94)(21,95,59)(22,60,96)(23,81,61)(24,62,82)(25,83,63)(26,64,84)(27,85,49)(28,50,86)(29,87,51)(30,52,88)(31,89,53)(32,54,90), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(1,24,75,62,33,82),(2,25,76,63,34,83),(3,26,77,64,35,84),(4,27,78,49,36,85),(5,28,79,50,37,86),(6,29,80,51,38,87),(7,30,65,52,39,88),(8,31,66,53,40,89),(9,32,67,54,41,90),(10,17,68,55,42,91),(11,18,69,56,43,92),(12,19,70,57,44,93),(13,20,71,58,45,94),(14,21,72,59,46,95),(15,22,73,60,47,96),(16,23,74,61,48,81)], [(1,75,33),(2,34,76),(3,77,35),(4,36,78),(5,79,37),(6,38,80),(7,65,39),(8,40,66),(9,67,41),(10,42,68),(11,69,43),(12,44,70),(13,71,45),(14,46,72),(15,73,47),(16,48,74),(17,91,55),(18,56,92),(19,93,57),(20,58,94),(21,95,59),(22,60,96),(23,81,61),(24,62,82),(25,83,63),(26,64,84),(27,85,49),(28,50,86),(29,87,51),(30,52,88),(31,89,53),(32,54,90)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)]])

144 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D6A···6F6G···6O8A···8H12A···12H12I···12T16A···16P24A···24P24Q···24AN48A···48AF
order12223333344446···66···68···812···1212···1216···1624···2424···2448···48
size11111122211111···12···21···11···12···23···31···12···23···3

144 irreducible representations

dim111111111111111122222222222222
type++++-+-
imageC1C2C2C3C4C4C6C6C8C8C12C12C16C24C24C48S3Dic3D6Dic3C3×S3C3⋊C8C3⋊C8C3×Dic3S3×C6C3×Dic3C3⋊C16C3×C3⋊C8C3×C3⋊C8C3×C3⋊C16
kernelC6×C3⋊C16C3×C3⋊C16C6×C24C2×C3⋊C16C3×C24C6×C12C3⋊C16C2×C24C3×C12C62C24C2×C12C3×C6C12C2×C6C6C2×C24C24C24C2×C12C2×C8C12C2×C6C8C8C2×C4C6C4C22C2
# reps121222424444168832111122222284416

Matrix representation of C6×C3⋊C16 in GL3(𝔽97) generated by

3600
0360
0036
,
100
0350
04361
,
9600
04760
0950
G:=sub<GL(3,GF(97))| [36,0,0,0,36,0,0,0,36],[1,0,0,0,35,43,0,0,61],[96,0,0,0,47,9,0,60,50] >;

C6×C3⋊C16 in GAP, Magma, Sage, TeX

C_6\times C_3\rtimes C_{16}
% in TeX

G:=Group("C6xC3:C16");
// GroupNames label

G:=SmallGroup(288,245);
// by ID

G=gap.SmallGroup(288,245);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-3,84,80,102,9414]);
// Polycyclic

G:=Group<a,b,c|a^6=b^3=c^16=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽