Extensions 1→N→G→Q→1 with N=C2 and Q=D125S3

Direct product G=N×Q with N=C2 and Q=D125S3
dρLabelID
C2×D125S396C2xD12:5S3288,943


Non-split extensions G=N.Q with N=C2 and Q=D125S3
extensionφ:Q→Aut NdρLabelID
C2.1(D125S3) = C62.11C23central extension (φ=1)96C2.1(D12:5S3)288,489
C2.2(D125S3) = Dic36Dic6central extension (φ=1)96C2.2(D12:5S3)288,492
C2.3(D125S3) = C62.47C23central extension (φ=1)96C2.3(D12:5S3)288,525
C2.4(D125S3) = C62.49C23central extension (φ=1)96C2.4(D12:5S3)288,527
C2.5(D125S3) = Dic3×D12central extension (φ=1)96C2.5(D12:5S3)288,540
C2.6(D125S3) = C62.17C23central stem extension (φ=1)96C2.6(D12:5S3)288,495
C2.7(D125S3) = D67Dic6central stem extension (φ=1)96C2.7(D12:5S3)288,505
C2.8(D125S3) = C62.28C23central stem extension (φ=1)96C2.8(D12:5S3)288,506
C2.9(D125S3) = C62.29C23central stem extension (φ=1)96C2.9(D12:5S3)288,507
C2.10(D125S3) = C12.27D12central stem extension (φ=1)96C2.10(D12:5S3)288,508
C2.11(D125S3) = C62.31C23central stem extension (φ=1)96C2.11(D12:5S3)288,509
C2.12(D125S3) = C62.39C23central stem extension (φ=1)96C2.12(D12:5S3)288,517
C2.13(D125S3) = C62.54C23central stem extension (φ=1)96C2.13(D12:5S3)288,532
C2.14(D125S3) = C62.55C23central stem extension (φ=1)96C2.14(D12:5S3)288,533
C2.15(D125S3) = D6.9D12central stem extension (φ=1)96C2.15(D12:5S3)288,539
C2.16(D125S3) = D63Dic6central stem extension (φ=1)96C2.16(D12:5S3)288,544
C2.17(D125S3) = C62.75C23central stem extension (φ=1)96C2.17(D12:5S3)288,553
C2.18(D125S3) = D62D12central stem extension (φ=1)96C2.18(D12:5S3)288,556
C2.19(D125S3) = C62.83C23central stem extension (φ=1)96C2.19(D12:5S3)288,561

׿
×
𝔽