Copied to
clipboard

G = D125S3order 144 = 24·32

The semidirect product of D12 and S3 acting through Inn(D12)

metabelian, supersoluble, monomial

Aliases: D125S3, D6.1D6, C12.21D6, Dic3.8D6, C4.6S32, (C4×S3)⋊1S3, (S3×C12)⋊2C2, (C3×D12)⋊4C2, D6⋊S32C2, C33(C4○D12), (S3×Dic3)⋊4C2, C321(C4○D4), (C3×C6).2C23, C6.2(C22×S3), C32(D42S3), C324Q85C2, (S3×C6).1C22, (C3×C12).17C22, C3⋊Dic3.5C22, (C3×Dic3).8C22, C2.5(C2×S32), SmallGroup(144,138)

Series: Derived Chief Lower central Upper central

C1C3×C6 — D125S3
C1C3C32C3×C6S3×C6S3×Dic3 — D125S3
C32C3×C6 — D125S3
C1C2C4

Generators and relations for D125S3
 G = < a,b,c,d | a12=b2=c3=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a6b, dcd=c-1 >

Subgroups: 260 in 86 conjugacy classes, 32 normal (22 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, D4, Q8, C32, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C4○D4, C3×S3, C3×C6, Dic6, C4×S3, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, C4○D12, D42S3, S3×Dic3, D6⋊S3, S3×C12, C3×D12, C324Q8, D125S3
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C22×S3, S32, C4○D12, D42S3, C2×S32, D125S3

Character table of D125S3

 class 12A2B2C2D3A3B3C4A4B4C4D4E6A6B6C6D6E6F6G12A12B12C12D12E12F12G
 size 1166622423318182246612122244466
ρ1111111111111111111111111111    trivial
ρ21111-11111-1-1-1-1111-1-11111111-1-1    linear of order 2
ρ3111-1-1111-1111-1111-1-11-1-1-1-1-1-111    linear of order 2
ρ4111-11111-1-1-1-11111111-1-1-1-1-1-1-1-1    linear of order 2
ρ511-111111-1-1-11-111111-11-1-1-1-1-1-1-1    linear of order 2
ρ611-11-1111-111-11111-1-1-11-1-1-1-1-111    linear of order 2
ρ711-1-1-11111-1-111111-1-1-1-111111-1-1    linear of order 2
ρ811-1-11111111-1-111111-1-11111111    linear of order 2
ρ922-2202-1-1-20000-12-1001-1-2-211100    orthogonal lifted from D6
ρ1022002-12-1222002-1-1-1-100-1-1-12-1-1-1    orthogonal lifted from S3
ρ112200-2-12-1-222002-1-11100111-21-1-1    orthogonal lifted from D6
ρ12222202-1-120000-12-100-1-122-1-1-100    orthogonal lifted from S3
ρ132200-2-12-12-2-2002-1-11100-1-1-12-111    orthogonal lifted from D6
ρ1422002-12-1-2-2-2002-1-1-1-100111-2111    orthogonal lifted from D6
ρ15222-202-1-1-20000-12-100-11-2-211100    orthogonal lifted from D6
ρ1622-2-202-1-120000-12-1001122-1-1-100    orthogonal lifted from D6
ρ172-200022202i-2i00-2-2-20000000002i-2i    complex lifted from C4○D4
ρ182-20002220-2i2i00-2-2-2000000000-2i2i    complex lifted from C4○D4
ρ192-2000-12-102i-2i00-211-3--3003-3-303-ii    complex lifted from C4○D12
ρ202-2000-12-10-2i2i00-211-3--300-3330-3i-i    complex lifted from C4○D12
ρ212-2000-12-102i-2i00-211--3-300-3330-3-ii    complex lifted from C4○D12
ρ222-2000-12-10-2i2i00-211--3-3003-3-303i-i    complex lifted from C4○D12
ρ2344000-2-2140000-2-210000-2-21-2100    orthogonal lifted from S32
ρ2444000-2-21-40000-2-21000022-12-100    orthogonal lifted from C2×S32
ρ254-40004-2-2000002-4200000000000    symplectic lifted from D42S3, Schur index 2
ρ264-4000-2-210000022-10000-2323-30300    symplectic faithful, Schur index 2
ρ274-4000-2-210000022-1000023-2330-300    symplectic faithful, Schur index 2

Smallest permutation representation of D125S3
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 33)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 36)(11 35)(12 34)(13 41)(14 40)(15 39)(16 38)(17 37)(18 48)(19 47)(20 46)(21 45)(22 44)(23 43)(24 42)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)(25 45)(26 46)(27 47)(28 48)(29 37)(30 38)(31 39)(32 40)(33 41)(34 42)(35 43)(36 44)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,36)(11,35)(12,34)(13,41)(14,40)(15,39)(16,38)(17,37)(18,48)(19,47)(20,46)(21,45)(22,44)(23,43)(24,42), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,45)(26,46)(27,47)(28,48)(29,37)(30,38)(31,39)(32,40)(33,41)(34,42)(35,43)(36,44)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,36)(11,35)(12,34)(13,41)(14,40)(15,39)(16,38)(17,37)(18,48)(19,47)(20,46)(21,45)(22,44)(23,43)(24,42), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,45)(26,46)(27,47)(28,48)(29,37)(30,38)(31,39)(32,40)(33,41)(34,42)(35,43)(36,44) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,36),(11,35),(12,34),(13,41),(14,40),(15,39),(16,38),(17,37),(18,48),(19,47),(20,46),(21,45),(22,44),(23,43),(24,42)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18),(25,45),(26,46),(27,47),(28,48),(29,37),(30,38),(31,39),(32,40),(33,41),(34,42),(35,43),(36,44)]])

D125S3 is a maximal subgroup of
D24⋊S3  C24.3D6  D6.1D12  D247S3  D129D6  D12.22D6  D12.24D6  D12.12D6  D12.34D6  S3×C4○D12  D1224D6  S3×D42S3  D1212D6  D12.25D6  D1215D6  D125D9  D365S3  C12.84S32  C12.S32  D6.S32  D6.4S32  (C3×D12)⋊S3  C12.57S32  C12⋊S312S3
D125S3 is a maximal quotient of
C62.11C23  Dic36Dic6  C62.17C23  D67Dic6  C62.28C23  C62.29C23  C12.27D12  C62.31C23  C62.39C23  C62.47C23  C62.49C23  C62.54C23  C62.55C23  D6.9D12  Dic3×D12  D63Dic6  C62.75C23  D62D12  C62.83C23  D125D9  D365S3  C12⋊S3⋊S3  D6.S32  D6.4S32  (C3×D12)⋊S3  C12.57S32  C12⋊S312S3

Matrix representation of D125S3 in GL6(𝔽13)

500000
080000
0011200
001000
000010
000001
,
0110000
600000
0012000
0012100
000010
000001
,
100000
010000
001000
000100
000001
00001212
,
1200000
010000
001000
000100
000010
00001212

G:=sub<GL(6,GF(13))| [5,0,0,0,0,0,0,8,0,0,0,0,0,0,1,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,6,0,0,0,0,11,0,0,0,0,0,0,0,12,12,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,0,0,0,0,0,12] >;

D125S3 in GAP, Magma, Sage, TeX

D_{12}\rtimes_5S_3
% in TeX

G:=Group("D12:5S3");
// GroupNames label

G:=SmallGroup(144,138);
// by ID

G=gap.SmallGroup(144,138);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,55,218,50,490,3461]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of D125S3 in TeX

׿
×
𝔽