Copied to
clipboard

G = C2×D125S3order 288 = 25·32

Direct product of C2 and D125S3

direct product, metabelian, supersoluble, monomial

Aliases: C2×D125S3, D1225D6, C62.127C23, (C4×S3)⋊12D6, (C6×D12)⋊13C2, (C2×D12)⋊15S3, C63(C4○D12), C6.2(S3×C23), (C3×C6).2C24, C62(D42S3), (C2×C12).164D6, D6.1(C22×S3), (S3×C12)⋊16C22, (C3×D12)⋊25C22, (S3×C6).20C23, (C22×S3).53D6, D6⋊S310C22, C12.106(C22×S3), (C6×C12).157C22, (C3×C12).111C23, (C2×Dic3).116D6, (S3×Dic3)⋊11C22, C3⋊Dic3.14C23, C324Q820C22, (C3×Dic3).25C23, Dic3.25(C22×S3), (C6×Dic3).156C22, (S3×C2×C4)⋊3S3, (S3×C2×C12)⋊7C2, C4.60(C2×S32), (C2×C4).86S32, C33(C2×C4○D12), C2.5(C22×S32), C321(C2×C4○D4), (C3×C6)⋊1(C4○D4), C32(C2×D42S3), C22.59(C2×S32), (C2×S3×Dic3)⋊23C2, (C2×D6⋊S3)⋊13C2, (S3×C2×C6).103C22, (C2×C324Q8)⋊19C2, (C2×C6).146(C22×S3), (C2×C3⋊Dic3).102C22, SmallGroup(288,943)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C2×D125S3
C1C3C32C3×C6S3×C6S3×Dic3C2×S3×Dic3 — C2×D125S3
C32C3×C6 — C2×D125S3
C1C22C2×C4

Generators and relations for C2×D125S3
 G = < a,b,c,d,e | a2=b12=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b6c, ede=d-1 >

Subgroups: 1122 in 347 conjugacy classes, 116 normal (26 characteristic)
C1, C2, C2 [×2], C2 [×6], C3 [×2], C3, C4 [×2], C4 [×6], C22, C22 [×12], S3 [×6], C6 [×2], C6 [×4], C6 [×9], C2×C4, C2×C4 [×15], D4 [×12], Q8 [×4], C23 [×3], C32, Dic3 [×2], Dic3 [×12], C12 [×4], C12 [×4], D6 [×6], D6 [×6], C2×C6 [×2], C2×C6 [×13], C22×C4 [×3], C2×D4 [×3], C2×Q8, C4○D4 [×8], C3×S3 [×6], C3×C6, C3×C6 [×2], Dic6 [×12], C4×S3 [×4], C4×S3 [×8], D12 [×4], C2×Dic3, C2×Dic3 [×14], C3⋊D4 [×16], C2×C12 [×2], C2×C12 [×6], C3×D4 [×4], C22×S3, C22×S3 [×2], C22×C6 [×3], C2×C4○D4, C3×Dic3 [×2], C3⋊Dic3 [×4], C3×C12 [×2], S3×C6 [×6], S3×C6 [×6], C62, C2×Dic6 [×3], S3×C2×C4, S3×C2×C4 [×2], C2×D12, C4○D12 [×8], D42S3 [×8], C22×Dic3 [×2], C2×C3⋊D4 [×4], C22×C12, C6×D4, S3×Dic3 [×8], D6⋊S3 [×8], S3×C12 [×4], C3×D12 [×4], C6×Dic3, C324Q8 [×4], C2×C3⋊Dic3 [×2], C6×C12, S3×C2×C6, S3×C2×C6 [×2], C2×C4○D12, C2×D42S3, D125S3 [×8], C2×S3×Dic3 [×2], C2×D6⋊S3 [×2], S3×C2×C12, C6×D12, C2×C324Q8, C2×D125S3
Quotients: C1, C2 [×15], C22 [×35], S3 [×2], C23 [×15], D6 [×14], C4○D4 [×2], C24, C22×S3 [×14], C2×C4○D4, S32, C4○D12 [×2], D42S3 [×2], S3×C23 [×2], C2×S32 [×3], C2×C4○D12, C2×D42S3, D125S3 [×2], C22×S32, C2×D125S3

Smallest permutation representation of C2×D125S3
On 96 points
Generators in S96
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 44)(26 45)(27 46)(28 47)(29 48)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(36 43)(49 61)(50 62)(51 63)(52 64)(53 65)(54 66)(55 67)(56 68)(57 69)(58 70)(59 71)(60 72)(73 85)(74 86)(75 87)(76 88)(77 89)(78 90)(79 91)(80 92)(81 93)(82 94)(83 95)(84 96)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 69)(2 68)(3 67)(4 66)(5 65)(6 64)(7 63)(8 62)(9 61)(10 72)(11 71)(12 70)(13 57)(14 56)(15 55)(16 54)(17 53)(18 52)(19 51)(20 50)(21 49)(22 60)(23 59)(24 58)(25 90)(26 89)(27 88)(28 87)(29 86)(30 85)(31 96)(32 95)(33 94)(34 93)(35 92)(36 91)(37 73)(38 84)(39 83)(40 82)(41 81)(42 80)(43 79)(44 78)(45 77)(46 76)(47 75)(48 74)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 45 41)(38 46 42)(39 47 43)(40 48 44)(49 57 53)(50 58 54)(51 59 55)(52 60 56)(61 69 65)(62 70 66)(63 71 67)(64 72 68)(73 77 81)(74 78 82)(75 79 83)(76 80 84)(85 89 93)(86 90 94)(87 91 95)(88 92 96)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 38)(14 39)(15 40)(16 41)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 37)(49 82)(50 83)(51 84)(52 73)(53 74)(54 75)(55 76)(56 77)(57 78)(58 79)(59 80)(60 81)(61 94)(62 95)(63 96)(64 85)(65 86)(66 87)(67 88)(68 89)(69 90)(70 91)(71 92)(72 93)

G:=sub<Sym(96)| (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,44)(26,45)(27,46)(28,47)(29,48)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(36,43)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,69)(2,68)(3,67)(4,66)(5,65)(6,64)(7,63)(8,62)(9,61)(10,72)(11,71)(12,70)(13,57)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,60)(23,59)(24,58)(25,90)(26,89)(27,88)(28,87)(29,86)(30,85)(31,96)(32,95)(33,94)(34,93)(35,92)(36,91)(37,73)(38,84)(39,83)(40,82)(41,81)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44)(49,57,53)(50,58,54)(51,59,55)(52,60,56)(61,69,65)(62,70,66)(63,71,67)(64,72,68)(73,77,81)(74,78,82)(75,79,83)(76,80,84)(85,89,93)(86,90,94)(87,91,95)(88,92,96), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,37)(49,82)(50,83)(51,84)(52,73)(53,74)(54,75)(55,76)(56,77)(57,78)(58,79)(59,80)(60,81)(61,94)(62,95)(63,96)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(71,92)(72,93)>;

G:=Group( (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,44)(26,45)(27,46)(28,47)(29,48)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(36,43)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,69)(2,68)(3,67)(4,66)(5,65)(6,64)(7,63)(8,62)(9,61)(10,72)(11,71)(12,70)(13,57)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,60)(23,59)(24,58)(25,90)(26,89)(27,88)(28,87)(29,86)(30,85)(31,96)(32,95)(33,94)(34,93)(35,92)(36,91)(37,73)(38,84)(39,83)(40,82)(41,81)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44)(49,57,53)(50,58,54)(51,59,55)(52,60,56)(61,69,65)(62,70,66)(63,71,67)(64,72,68)(73,77,81)(74,78,82)(75,79,83)(76,80,84)(85,89,93)(86,90,94)(87,91,95)(88,92,96), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,37)(49,82)(50,83)(51,84)(52,73)(53,74)(54,75)(55,76)(56,77)(57,78)(58,79)(59,80)(60,81)(61,94)(62,95)(63,96)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(71,92)(72,93) );

G=PermutationGroup([(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,44),(26,45),(27,46),(28,47),(29,48),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(36,43),(49,61),(50,62),(51,63),(52,64),(53,65),(54,66),(55,67),(56,68),(57,69),(58,70),(59,71),(60,72),(73,85),(74,86),(75,87),(76,88),(77,89),(78,90),(79,91),(80,92),(81,93),(82,94),(83,95),(84,96)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,69),(2,68),(3,67),(4,66),(5,65),(6,64),(7,63),(8,62),(9,61),(10,72),(11,71),(12,70),(13,57),(14,56),(15,55),(16,54),(17,53),(18,52),(19,51),(20,50),(21,49),(22,60),(23,59),(24,58),(25,90),(26,89),(27,88),(28,87),(29,86),(30,85),(31,96),(32,95),(33,94),(34,93),(35,92),(36,91),(37,73),(38,84),(39,83),(40,82),(41,81),(42,80),(43,79),(44,78),(45,77),(46,76),(47,75),(48,74)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,45,41),(38,46,42),(39,47,43),(40,48,44),(49,57,53),(50,58,54),(51,59,55),(52,60,56),(61,69,65),(62,70,66),(63,71,67),(64,72,68),(73,77,81),(74,78,82),(75,79,83),(76,80,84),(85,89,93),(86,90,94),(87,91,95),(88,92,96)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,38),(14,39),(15,40),(16,41),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,37),(49,82),(50,83),(51,84),(52,73),(53,74),(54,75),(55,76),(56,77),(57,78),(58,79),(59,80),(60,81),(61,94),(62,95),(63,96),(64,85),(65,86),(66,87),(67,88),(68,89),(69,90),(70,91),(71,92),(72,93)])

54 conjugacy classes

class 1 2A2B2C2D···2I3A3B3C4A4B4C4D4E4F4G4H4I4J6A···6F6G6H6I6J6K6L6M6N6O6P6Q12A12B12C12D12E···12J12K12L12M12N
order12222···233344444444446···6666666666661212121212···1212121212
size11116···6224223333181818182···244466661212121222224···46666

54 irreducible representations

dim111111122222222244444
type+++++++++++++++-++-
imageC1C2C2C2C2C2C2S3S3D6D6D6D6D6C4○D4C4○D12S32D42S3C2×S32C2×S32D125S3
kernelC2×D125S3D125S3C2×S3×Dic3C2×D6⋊S3S3×C2×C12C6×D12C2×C324Q8S3×C2×C4C2×D12C4×S3D12C2×Dic3C2×C12C22×S3C3×C6C6C2×C4C6C4C22C2
# reps182211111441234812214

Matrix representation of C2×D125S3 in GL6(𝔽13)

1200000
0120000
0012000
0001200
000010
000001
,
130000
8120000
0001200
0011200
000010
000001
,
980000
340000
0012100
000100
000010
000001
,
100000
010000
001000
000100
000001
00001212
,
520000
180000
001000
000100
000010
00001212

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,8,0,0,0,0,3,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[9,3,0,0,0,0,8,4,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[5,1,0,0,0,0,2,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,0,0,0,0,0,12] >;

C2×D125S3 in GAP, Magma, Sage, TeX

C_2\times D_{12}\rtimes_5S_3
% in TeX

G:=Group("C2xD12:5S3");
// GroupNames label

G:=SmallGroup(288,943);
// by ID

G=gap.SmallGroup(288,943);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,675,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^12=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^6*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽