Copied to
clipboard

G = C2×D125S3order 288 = 25·32

Direct product of C2 and D125S3

direct product, metabelian, supersoluble, monomial

Aliases: C2×D125S3, D1225D6, C62.127C23, (C4×S3)⋊12D6, (C6×D12)⋊13C2, (C2×D12)⋊15S3, C63(C4○D12), C6.2(S3×C23), (C3×C6).2C24, C62(D42S3), (C2×C12).164D6, D6.1(C22×S3), (S3×C12)⋊16C22, (C3×D12)⋊25C22, (S3×C6).20C23, (C22×S3).53D6, D6⋊S310C22, C12.106(C22×S3), (C6×C12).157C22, (C3×C12).111C23, (C2×Dic3).116D6, (S3×Dic3)⋊11C22, C3⋊Dic3.14C23, C324Q820C22, (C3×Dic3).25C23, Dic3.25(C22×S3), (C6×Dic3).156C22, (S3×C2×C4)⋊3S3, (S3×C2×C12)⋊7C2, C4.60(C2×S32), (C2×C4).86S32, C33(C2×C4○D12), C2.5(C22×S32), C321(C2×C4○D4), (C3×C6)⋊1(C4○D4), C32(C2×D42S3), C22.59(C2×S32), (C2×S3×Dic3)⋊23C2, (C2×D6⋊S3)⋊13C2, (S3×C2×C6).103C22, (C2×C324Q8)⋊19C2, (C2×C6).146(C22×S3), (C2×C3⋊Dic3).102C22, SmallGroup(288,943)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C2×D125S3
C1C3C32C3×C6S3×C6S3×Dic3C2×S3×Dic3 — C2×D125S3
C32C3×C6 — C2×D125S3
C1C22C2×C4

Generators and relations for C2×D125S3
 G = < a,b,c,d,e | a2=b12=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b6c, ede=d-1 >

Subgroups: 1122 in 347 conjugacy classes, 116 normal (26 characteristic)
C1, C2, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C32, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C22×C4, C2×D4, C2×Q8, C4○D4, C3×S3, C3×C6, C3×C6, Dic6, C4×S3, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C2×C4○D4, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, C62, C2×Dic6, S3×C2×C4, S3×C2×C4, C2×D12, C4○D12, D42S3, C22×Dic3, C2×C3⋊D4, C22×C12, C6×D4, S3×Dic3, D6⋊S3, S3×C12, C3×D12, C6×Dic3, C324Q8, C2×C3⋊Dic3, C6×C12, S3×C2×C6, S3×C2×C6, C2×C4○D12, C2×D42S3, D125S3, C2×S3×Dic3, C2×D6⋊S3, S3×C2×C12, C6×D12, C2×C324Q8, C2×D125S3
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, S32, C4○D12, D42S3, S3×C23, C2×S32, C2×C4○D12, C2×D42S3, D125S3, C22×S32, C2×D125S3

Smallest permutation representation of C2×D125S3
On 96 points
Generators in S96
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 13)(9 14)(10 15)(11 16)(12 17)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 37)(33 38)(34 39)(35 40)(36 41)(49 61)(50 62)(51 63)(52 64)(53 65)(54 66)(55 67)(56 68)(57 69)(58 70)(59 71)(60 72)(73 91)(74 92)(75 93)(76 94)(77 95)(78 96)(79 85)(80 86)(81 87)(82 88)(83 89)(84 90)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 66)(2 65)(3 64)(4 63)(5 62)(6 61)(7 72)(8 71)(9 70)(10 69)(11 68)(12 67)(13 59)(14 58)(15 57)(16 56)(17 55)(18 54)(19 53)(20 52)(21 51)(22 50)(23 49)(24 60)(25 86)(26 85)(27 96)(28 95)(29 94)(30 93)(31 92)(32 91)(33 90)(34 89)(35 88)(36 87)(37 73)(38 84)(39 83)(40 82)(41 81)(42 80)(43 79)(44 78)(45 77)(46 76)(47 75)(48 74)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 45 41)(38 46 42)(39 47 43)(40 48 44)(49 57 53)(50 58 54)(51 59 55)(52 60 56)(61 69 65)(62 70 66)(63 71 67)(64 72 68)(73 77 81)(74 78 82)(75 79 83)(76 80 84)(85 89 93)(86 90 94)(87 91 95)(88 92 96)
(1 33)(2 34)(3 35)(4 36)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 45)(14 46)(15 47)(16 48)(17 37)(18 38)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)(49 73)(50 74)(51 75)(52 76)(53 77)(54 78)(55 79)(56 80)(57 81)(58 82)(59 83)(60 84)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 85)(68 86)(69 87)(70 88)(71 89)(72 90)

G:=sub<Sym(96)| (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,13)(9,14)(10,15)(11,16)(12,17)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,37)(33,38)(34,39)(35,40)(36,41)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,85)(80,86)(81,87)(82,88)(83,89)(84,90), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,66)(2,65)(3,64)(4,63)(5,62)(6,61)(7,72)(8,71)(9,70)(10,69)(11,68)(12,67)(13,59)(14,58)(15,57)(16,56)(17,55)(18,54)(19,53)(20,52)(21,51)(22,50)(23,49)(24,60)(25,86)(26,85)(27,96)(28,95)(29,94)(30,93)(31,92)(32,91)(33,90)(34,89)(35,88)(36,87)(37,73)(38,84)(39,83)(40,82)(41,81)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44)(49,57,53)(50,58,54)(51,59,55)(52,60,56)(61,69,65)(62,70,66)(63,71,67)(64,72,68)(73,77,81)(74,78,82)(75,79,83)(76,80,84)(85,89,93)(86,90,94)(87,91,95)(88,92,96), (1,33)(2,34)(3,35)(4,36)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,45)(14,46)(15,47)(16,48)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(49,73)(50,74)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,81)(58,82)(59,83)(60,84)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,85)(68,86)(69,87)(70,88)(71,89)(72,90)>;

G:=Group( (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,13)(9,14)(10,15)(11,16)(12,17)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,37)(33,38)(34,39)(35,40)(36,41)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,85)(80,86)(81,87)(82,88)(83,89)(84,90), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,66)(2,65)(3,64)(4,63)(5,62)(6,61)(7,72)(8,71)(9,70)(10,69)(11,68)(12,67)(13,59)(14,58)(15,57)(16,56)(17,55)(18,54)(19,53)(20,52)(21,51)(22,50)(23,49)(24,60)(25,86)(26,85)(27,96)(28,95)(29,94)(30,93)(31,92)(32,91)(33,90)(34,89)(35,88)(36,87)(37,73)(38,84)(39,83)(40,82)(41,81)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44)(49,57,53)(50,58,54)(51,59,55)(52,60,56)(61,69,65)(62,70,66)(63,71,67)(64,72,68)(73,77,81)(74,78,82)(75,79,83)(76,80,84)(85,89,93)(86,90,94)(87,91,95)(88,92,96), (1,33)(2,34)(3,35)(4,36)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,45)(14,46)(15,47)(16,48)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(49,73)(50,74)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,81)(58,82)(59,83)(60,84)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,85)(68,86)(69,87)(70,88)(71,89)(72,90) );

G=PermutationGroup([[(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,13),(9,14),(10,15),(11,16),(12,17),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,37),(33,38),(34,39),(35,40),(36,41),(49,61),(50,62),(51,63),(52,64),(53,65),(54,66),(55,67),(56,68),(57,69),(58,70),(59,71),(60,72),(73,91),(74,92),(75,93),(76,94),(77,95),(78,96),(79,85),(80,86),(81,87),(82,88),(83,89),(84,90)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,66),(2,65),(3,64),(4,63),(5,62),(6,61),(7,72),(8,71),(9,70),(10,69),(11,68),(12,67),(13,59),(14,58),(15,57),(16,56),(17,55),(18,54),(19,53),(20,52),(21,51),(22,50),(23,49),(24,60),(25,86),(26,85),(27,96),(28,95),(29,94),(30,93),(31,92),(32,91),(33,90),(34,89),(35,88),(36,87),(37,73),(38,84),(39,83),(40,82),(41,81),(42,80),(43,79),(44,78),(45,77),(46,76),(47,75),(48,74)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,45,41),(38,46,42),(39,47,43),(40,48,44),(49,57,53),(50,58,54),(51,59,55),(52,60,56),(61,69,65),(62,70,66),(63,71,67),(64,72,68),(73,77,81),(74,78,82),(75,79,83),(76,80,84),(85,89,93),(86,90,94),(87,91,95),(88,92,96)], [(1,33),(2,34),(3,35),(4,36),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,45),(14,46),(15,47),(16,48),(17,37),(18,38),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44),(49,73),(50,74),(51,75),(52,76),(53,77),(54,78),(55,79),(56,80),(57,81),(58,82),(59,83),(60,84),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,85),(68,86),(69,87),(70,88),(71,89),(72,90)]])

54 conjugacy classes

class 1 2A2B2C2D···2I3A3B3C4A4B4C4D4E4F4G4H4I4J6A···6F6G6H6I6J6K6L6M6N6O6P6Q12A12B12C12D12E···12J12K12L12M12N
order12222···233344444444446···6666666666661212121212···1212121212
size11116···6224223333181818182···244466661212121222224···46666

54 irreducible representations

dim111111122222222244444
type+++++++++++++++-++-
imageC1C2C2C2C2C2C2S3S3D6D6D6D6D6C4○D4C4○D12S32D42S3C2×S32C2×S32D125S3
kernelC2×D125S3D125S3C2×S3×Dic3C2×D6⋊S3S3×C2×C12C6×D12C2×C324Q8S3×C2×C4C2×D12C4×S3D12C2×Dic3C2×C12C22×S3C3×C6C6C2×C4C6C4C22C2
# reps182211111441234812214

Matrix representation of C2×D125S3 in GL6(𝔽13)

1200000
0120000
0012000
0001200
000010
000001
,
130000
8120000
0001200
0011200
000010
000001
,
980000
340000
0012100
000100
000010
000001
,
100000
010000
001000
000100
000001
00001212
,
520000
180000
001000
000100
000010
00001212

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,8,0,0,0,0,3,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[9,3,0,0,0,0,8,4,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[5,1,0,0,0,0,2,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,0,0,0,0,0,12] >;

C2×D125S3 in GAP, Magma, Sage, TeX

C_2\times D_{12}\rtimes_5S_3
% in TeX

G:=Group("C2xD12:5S3");
// GroupNames label

G:=SmallGroup(288,943);
// by ID

G=gap.SmallGroup(288,943);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,675,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^12=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^6*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽