# Extensions 1→N→G→Q→1 with N=S3×D12 and Q=C2

Direct product G=N×Q with N=S3×D12 and Q=C2
dρLabelID
C2×S3×D1248C2xS3xD12288,951

Semidirect products G=N:Q with N=S3×D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×D12)⋊1C2 = S3×D24φ: C2/C1C2 ⊆ Out S3×D12484+(S3xD12):1C2288,441
(S3×D12)⋊2C2 = C241D6φ: C2/C1C2 ⊆ Out S3×D12484+(S3xD12):2C2288,442
(S3×D12)⋊3C2 = D24⋊S3φ: C2/C1C2 ⊆ Out S3×D12484(S3xD12):3C2288,443
(S3×D12)⋊4C2 = S3×D4⋊S3φ: C2/C1C2 ⊆ Out S3×D12488+(S3xD12):4C2288,572
(S3×D12)⋊5C2 = Dic63D6φ: C2/C1C2 ⊆ Out S3×D12488+(S3xD12):5C2288,573
(S3×D12)⋊6C2 = D126D6φ: C2/C1C2 ⊆ Out S3×D12488+(S3xD12):6C2288,587
(S3×D12)⋊7C2 = D1224D6φ: C2/C1C2 ⊆ Out S3×D12484(S3xD12):7C2288,955
(S3×D12)⋊8C2 = D1227D6φ: C2/C1C2 ⊆ Out S3×D12244+(S3xD12):8C2288,956
(S3×D12)⋊9C2 = S32×D4φ: C2/C1C2 ⊆ Out S3×D12248+(S3xD12):9C2288,958
(S3×D12)⋊10C2 = D1213D6φ: C2/C1C2 ⊆ Out S3×D12248+(S3xD12):10C2288,962
(S3×D12)⋊11C2 = S3×Q83S3φ: C2/C1C2 ⊆ Out S3×D12488+(S3xD12):11C2288,966
(S3×D12)⋊12C2 = D1216D6φ: C2/C1C2 ⊆ Out S3×D12488+(S3xD12):12C2288,968
(S3×D12)⋊13C2 = S3×C4○D12φ: trivial image484(S3xD12):13C2288,953

Non-split extensions G=N.Q with N=S3×D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×D12).1C2 = S3×C24⋊C2φ: C2/C1C2 ⊆ Out S3×D12484(S3xD12).1C2288,440
(S3×D12).2C2 = S3×Q82S3φ: C2/C1C2 ⊆ Out S3×D12488+(S3xD12).2C2288,586

׿
×
𝔽