direct product, metabelian, supersoluble, monomial
Aliases: S3×D24, D12⋊7D6, C24⋊16D6, D6.11D12, Dic3.2D12, C8⋊4S32, C3⋊C8⋊22D6, C3⋊1(S3×D8), (S3×C8)⋊1S3, (C3×S3)⋊1D8, C3⋊1(C2×D24), C6.2(S3×D4), (S3×C24)⋊4C2, C32⋊3(C2×D8), (C3×D24)⋊8C2, (S3×D12)⋊1C2, C6.2(C2×D12), C2.7(S3×D12), C32⋊5D8⋊6C2, C3⋊D24⋊1C2, (C3×C24)⋊6C22, (S3×C6).18D4, (C4×S3).34D6, (C3×D12)⋊1C22, C12⋊S3⋊1C22, (C3×C12).41C23, (C3×Dic3).21D4, (S3×C12).42C22, C12.118(C22×S3), C4.41(C2×S32), (C3×C3⋊C8)⋊26C22, (C3×C6).25(C2×D4), SmallGroup(288,441)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×D24
G = < a,b,c,d | a3=b2=c24=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 994 in 163 conjugacy classes, 44 normal (30 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, S3, C6, C6, C8, C8, C2×C4, D4, C23, C32, Dic3, C12, C12, D6, D6, C2×C6, C2×C8, D8, C2×D4, C3×S3, C3×S3, C3⋊S3, C3×C6, C3⋊C8, C24, C24, C4×S3, D12, D12, C3⋊D4, C2×C12, C3×D4, C22×S3, C2×D8, C3×Dic3, C3×C12, S32, S3×C6, S3×C6, C2×C3⋊S3, S3×C8, D24, D24, D4⋊S3, C2×C24, C3×D8, C2×D12, S3×D4, C3×C3⋊C8, C3×C24, C3⋊D12, S3×C12, C3×D12, C12⋊S3, C2×S32, C2×D24, S3×D8, C3⋊D24, S3×C24, C3×D24, C32⋊5D8, S3×D12, S3×D24
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, D12, C22×S3, C2×D8, S32, D24, C2×D12, S3×D4, C2×S32, C2×D24, S3×D8, S3×D12, S3×D24
(1 17 9)(2 18 10)(3 19 11)(4 20 12)(5 21 13)(6 22 14)(7 23 15)(8 24 16)(25 33 41)(26 34 42)(27 35 43)(28 36 44)(29 37 45)(30 38 46)(31 39 47)(32 40 48)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 25)(24 26)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 41)(2 40)(3 39)(4 38)(5 37)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 29)(14 28)(15 27)(16 26)(17 25)(18 48)(19 47)(20 46)(21 45)(22 44)(23 43)(24 42)
G:=sub<Sym(48)| (1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,33,41)(26,34,42)(27,35,43)(28,36,44)(29,37,45)(30,38,46)(31,39,47)(32,40,48), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,25)(24,26), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,48)(19,47)(20,46)(21,45)(22,44)(23,43)(24,42)>;
G:=Group( (1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,33,41)(26,34,42)(27,35,43)(28,36,44)(29,37,45)(30,38,46)(31,39,47)(32,40,48), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,25)(24,26), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,48)(19,47)(20,46)(21,45)(22,44)(23,43)(24,42) );
G=PermutationGroup([[(1,17,9),(2,18,10),(3,19,11),(4,20,12),(5,21,13),(6,22,14),(7,23,15),(8,24,16),(25,33,41),(26,34,42),(27,35,43),(28,36,44),(29,37,45),(30,38,46),(31,39,47),(32,40,48)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,25),(24,26)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,41),(2,40),(3,39),(4,38),(5,37),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,29),(14,28),(15,27),(16,26),(17,25),(18,48),(19,47),(20,46),(21,45),(22,44),(23,43),(24,42)]])
45 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 24A | 24B | 24C | 24D | 24E | ··· | 24J | 24K | 24L | 24M | 24N |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | 24 | 24 | 24 | 24 | ··· | 24 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 3 | 3 | 12 | 12 | 36 | 36 | 2 | 2 | 4 | 2 | 6 | 2 | 2 | 4 | 6 | 6 | 24 | 24 | 2 | 2 | 6 | 6 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 6 | 6 | 6 | 6 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D4 | D4 | D6 | D6 | D6 | D6 | D8 | D12 | D12 | D24 | S32 | S3×D4 | C2×S32 | S3×D8 | S3×D12 | S3×D24 |
kernel | S3×D24 | C3⋊D24 | S3×C24 | C3×D24 | C32⋊5D8 | S3×D12 | S3×C8 | D24 | C3×Dic3 | S3×C6 | C3⋊C8 | C24 | C4×S3 | D12 | C3×S3 | Dic3 | D6 | S3 | C8 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 4 | 2 | 2 | 8 | 1 | 1 | 1 | 2 | 2 | 4 |
Matrix representation of S3×D24 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 32 | 0 | 0 | 0 | 0 |
57 | 41 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 72 |
72 | 71 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 72 |
0 | 0 | 0 | 0 | 0 | 72 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,57,0,0,0,0,32,41,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[72,0,0,0,0,0,71,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,72,72] >;
S3×D24 in GAP, Magma, Sage, TeX
S_3\times D_{24}
% in TeX
G:=Group("S3xD24");
// GroupNames label
G:=SmallGroup(288,441);
// by ID
G=gap.SmallGroup(288,441);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,135,142,346,80,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^24=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations