Extensions 1→N→G→Q→1 with N=C2×S32 and Q=C4

Direct product G=N×Q with N=C2×S32 and Q=C4

Semidirect products G=N:Q with N=C2×S32 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×S32)⋊C4 = C62.2D4φ: C4/C1C4 ⊆ Out C2×S32244+(C2xS3^2):C4288,386
(C2×S32)⋊2C4 = S3×D6⋊C4φ: C4/C2C2 ⊆ Out C2×S3248(C2xS3^2):2C4288,568
(C2×S32)⋊3C4 = C62.91C23φ: C4/C2C2 ⊆ Out C2×S3248(C2xS3^2):3C4288,569
(C2×S32)⋊4C4 = C2×S32⋊C4φ: C4/C2C2 ⊆ Out C2×S3224(C2xS3^2):4C4288,880

Non-split extensions G=N.Q with N=C2×S32 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×S32).C4 = C4.S3≀C2φ: C4/C1C4 ⊆ Out C2×S32244(C2xS3^2).C4288,375
(C2×S32).2C4 = S32⋊C8φ: C4/C2C2 ⊆ Out C2×S32244(C2xS3^2).2C4288,374
(C2×S32).3C4 = S3×C8⋊S3φ: C4/C2C2 ⊆ Out C2×S32484(C2xS3^2).3C4288,438
(C2×S32).4C4 = C24⋊D6φ: C4/C2C2 ⊆ Out C2×S32484(C2xS3^2).4C4288,439
(C2×S32).5C4 = S32×C8φ: trivial image484(C2xS3^2).5C4288,437