non-abelian, soluble, monomial
Aliases: C4.9S3wrC2, (C3xC12).1D4, C3:Dic3.2D4, C32:(C4.D4), D6:D6.1C2, C12.31D6:7C2, C32:M4(2):1C2, (C2xS32).C4, C2.3(S32:C4), (C4xC3:S3).1C22, (C3xC6).2(C22:C4), (C2xC3:S3).6(C2xC4), SmallGroup(288,375)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4.S3wrC2
G = < a,b,c,d,e | a4=b3=c3=e2=1, d4=a2, ab=ba, ac=ca, dad-1=eae=a-1, bc=cb, dbd-1=c, ebe=dcd-1=b-1, ce=ec, ede=a-1d3 >
Subgroups: 520 in 83 conjugacy classes, 15 normal (13 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C2xC4, D4, C23, C32, Dic3, C12, D6, C2xC6, M4(2), C2xD4, C3xS3, C3:S3, C3xC6, C3:C8, C24, C4xS3, D12, C3:D4, C3xD4, C22xS3, C4.D4, C3:Dic3, C3xC12, S32, S3xC6, C2xC3:S3, C8:S3, S3xD4, C3xC3:C8, C32:2C8, D6:S3, C3xD12, C4xC3:S3, C2xS32, C12.31D6, C32:M4(2), D6:D6, C4.S3wrC2
Quotients: C1, C2, C4, C22, C2xC4, D4, C22:C4, C4.D4, S3wrC2, S32:C4, C4.S3wrC2
Character table of C4.S3wrC2
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 12 | 12 | 18 | 4 | 4 | 2 | 18 | 4 | 4 | 24 | 24 | 12 | 12 | 36 | 36 | 4 | 4 | 8 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -i | i | -i | i | -1 | -1 | -1 | -i | -i | i | i | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -i | i | i | -i | -1 | -1 | -1 | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | i | -i | i | -i | -1 | -1 | -1 | i | i | -i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | i | -i | -i | i | -1 | -1 | -1 | i | i | -i | -i | linear of order 4 |
ρ9 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | -2 | -2 | 0 | -2 | 1 | 4 | 0 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3wrC2 |
ρ12 | 4 | -4 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4.D4 |
ρ13 | 4 | 4 | 2 | -2 | 0 | -2 | 1 | -4 | 0 | -2 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32:C4 |
ρ14 | 4 | 4 | 2 | 2 | 0 | -2 | 1 | 4 | 0 | -2 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3wrC2 |
ρ15 | 4 | 4 | 0 | 0 | 0 | 1 | -2 | 4 | 0 | 1 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 1 | 1 | -2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3wrC2 |
ρ16 | 4 | 4 | -2 | 2 | 0 | -2 | 1 | -4 | 0 | -2 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32:C4 |
ρ17 | 4 | 4 | 0 | 0 | 0 | 1 | -2 | 4 | 0 | 1 | -2 | 0 | 0 | -2 | -2 | 0 | 0 | 1 | 1 | -2 | 1 | 1 | 1 | 1 | orthogonal lifted from S3wrC2 |
ρ18 | 4 | 4 | 0 | 0 | 0 | 1 | -2 | -4 | 0 | 1 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | -1 | -1 | 2 | i | i | -i | -i | complex lifted from S32:C4 |
ρ19 | 4 | 4 | 0 | 0 | 0 | 1 | -2 | -4 | 0 | 1 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | -1 | -1 | 2 | -i | -i | i | i | complex lifted from S32:C4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 3i | -3i | 0 | 2ζ85ζ3+ζ85 | 2ζ8ζ3+ζ8 | 2ζ83ζ3+ζ83 | 2ζ87ζ3+ζ87 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 3i | -3i | 0 | 2ζ8ζ3+ζ8 | 2ζ85ζ3+ζ85 | 2ζ87ζ3+ζ87 | 2ζ83ζ3+ζ83 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -3i | 3i | 0 | 2ζ87ζ3+ζ87 | 2ζ83ζ3+ζ83 | 2ζ8ζ3+ζ8 | 2ζ85ζ3+ζ85 | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -3i | 3i | 0 | 2ζ83ζ3+ζ83 | 2ζ87ζ3+ζ87 | 2ζ85ζ3+ζ85 | 2ζ8ζ3+ζ8 | complex faithful |
ρ24 | 8 | -8 | 0 | 0 | 0 | -4 | 2 | 0 | 0 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 7 5 3)(2 4 6 8)(9 18 13 22)(10 23 14 19)(11 20 15 24)(12 17 16 21)
(1 17 10)(3 12 19)(5 21 14)(7 16 23)
(2 11 18)(4 20 13)(6 15 22)(8 24 9)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 3)(2 8)(4 6)(5 7)(9 18)(10 12)(11 24)(13 22)(14 16)(15 20)(17 19)(21 23)
G:=sub<Sym(24)| (1,7,5,3)(2,4,6,8)(9,18,13,22)(10,23,14,19)(11,20,15,24)(12,17,16,21), (1,17,10)(3,12,19)(5,21,14)(7,16,23), (2,11,18)(4,20,13)(6,15,22)(8,24,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,3)(2,8)(4,6)(5,7)(9,18)(10,12)(11,24)(13,22)(14,16)(15,20)(17,19)(21,23)>;
G:=Group( (1,7,5,3)(2,4,6,8)(9,18,13,22)(10,23,14,19)(11,20,15,24)(12,17,16,21), (1,17,10)(3,12,19)(5,21,14)(7,16,23), (2,11,18)(4,20,13)(6,15,22)(8,24,9), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,3)(2,8)(4,6)(5,7)(9,18)(10,12)(11,24)(13,22)(14,16)(15,20)(17,19)(21,23) );
G=PermutationGroup([[(1,7,5,3),(2,4,6,8),(9,18,13,22),(10,23,14,19),(11,20,15,24),(12,17,16,21)], [(1,17,10),(3,12,19),(5,21,14),(7,16,23)], [(2,11,18),(4,20,13),(6,15,22),(8,24,9)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,3),(2,8),(4,6),(5,7),(9,18),(10,12),(11,24),(13,22),(14,16),(15,20),(17,19),(21,23)]])
G:=TransitiveGroup(24,662);
Matrix representation of C4.S3wrC2 ►in GL4(F5) generated by
1 | 3 | 2 | 3 |
3 | 1 | 3 | 4 |
1 | 1 | 2 | 1 |
4 | 4 | 0 | 1 |
0 | 0 | 2 | 4 |
0 | 4 | 2 | 0 |
0 | 2 | 0 | 0 |
1 | 4 | 2 | 4 |
4 | 4 | 0 | 0 |
1 | 0 | 0 | 0 |
3 | 0 | 1 | 2 |
1 | 4 | 1 | 3 |
0 | 3 | 1 | 0 |
0 | 4 | 1 | 0 |
1 | 2 | 1 | 1 |
1 | 4 | 1 | 0 |
1 | 0 | 2 | 4 |
0 | 0 | 2 | 0 |
0 | 3 | 0 | 0 |
0 | 1 | 2 | 4 |
G:=sub<GL(4,GF(5))| [1,3,1,4,3,1,1,4,2,3,2,0,3,4,1,1],[0,0,0,1,0,4,2,4,2,2,0,2,4,0,0,4],[4,1,3,1,4,0,0,4,0,0,1,1,0,0,2,3],[0,0,1,1,3,4,2,4,1,1,1,1,0,0,1,0],[1,0,0,0,0,0,3,1,2,2,0,2,4,0,0,4] >;
C4.S3wrC2 in GAP, Magma, Sage, TeX
C_4.S_3\wr C_2
% in TeX
G:=Group("C4.S3wrC2");
// GroupNames label
G:=SmallGroup(288,375);
// by ID
G=gap.SmallGroup(288,375);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,85,64,219,675,80,2693,2028,691,797,2372]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^3=c^3=e^2=1,d^4=a^2,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e=a^-1,b*c=c*b,d*b*d^-1=c,e*b*e=d*c*d^-1=b^-1,c*e=e*c,e*d*e=a^-1*d^3>;
// generators/relations
Export