Extensions 1→N→G→Q→1 with N=D6.4D6 and Q=C2

Direct product G=N×Q with N=D6.4D6 and Q=C2

Semidirect products G=N:Q with N=D6.4D6 and Q=C2
extensionφ:Q→Out NdρLabelID
D6.4D61C2 = C62.12D4φ: C2/C1C2 ⊆ Out D6.4D6244D6.4D6:1C2288,884
D6.4D62C2 = C62.13D4φ: C2/C1C2 ⊆ Out D6.4D6488-D6.4D6:2C2288,885
D6.4D63C2 = D12.34D6φ: C2/C1C2 ⊆ Out D6.4D6484-D6.4D6:3C2288,946
D6.4D64C2 = Dic6.24D6φ: C2/C1C2 ⊆ Out D6.4D6488-D6.4D6:4C2288,957
D6.4D65C2 = S3×D42S3φ: C2/C1C2 ⊆ Out D6.4D6488-D6.4D6:5C2288,959
D6.4D66C2 = D1212D6φ: C2/C1C2 ⊆ Out D6.4D6488-D6.4D6:6C2288,961
D6.4D67C2 = C32⋊2+ 1+4φ: C2/C1C2 ⊆ Out D6.4D6244D6.4D6:7C2288,978
D6.4D68C2 = D1223D6φ: trivial image244D6.4D6:8C2288,954

Non-split extensions G=N.Q with N=D6.4D6 and Q=C2
extensionφ:Q→Out NdρLabelID
D6.4D6.1C2 = Dic3≀C2φ: C2/C1C2 ⊆ Out D6.4D6244-D6.4D6.1C2288,389
D6.4D6.2C2 = C62.15D4φ: C2/C1C2 ⊆ Out D6.4D6484-D6.4D6.2C2288,887