Copied to
clipboard

G = D12.34D6order 288 = 25·32

The non-split extension by D12 of D6 acting through Inn(D12)

metabelian, supersoluble, monomial

Aliases: D12.34D6, Dic6.35D6, C3222- 1+4, C62.130C23, C4○D126S3, C3⋊D4.2D6, C32(Q8○D12), (S3×Dic6)⋊8C2, (C4×S3).14D6, C6.5(S3×C23), (C3×C6).5C24, D125S37C2, D6.4D63C2, (C2×C12).167D6, (S3×C6).3C23, D6.4(C22×S3), (S3×C12).31C22, (C6×C12).160C22, (C3×C12).114C23, C12.131(C22×S3), D6⋊S3.4C22, (C3×D12).43C22, C3⋊Dic3.16C23, (C3×Dic3).4C23, Dic3.3(C22×S3), (S3×Dic3).2C22, C322Q8.5C22, (C3×Dic6).44C22, C324Q8.35C22, C4.62(C2×S32), (C2×C4).36S32, C2.8(C22×S32), C22.11(C2×S32), (C3×C4○D12)⋊10C2, (C2×C6).13(C22×S3), (C2×C324Q8)⋊20C2, (C3×C3⋊D4).3C22, (C2×C3⋊Dic3).103C22, SmallGroup(288,946)

Series: Derived Chief Lower central Upper central

C1C3×C6 — D12.34D6
C1C3C32C3×C6S3×C6S3×Dic3S3×Dic6 — D12.34D6
C32C3×C6 — D12.34D6
C1C2C2×C4

Generators and relations for D12.34D6
 G = < a,b,c,d | a12=b2=1, c6=d2=a6, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=a6c5 >

Subgroups: 994 in 311 conjugacy classes, 108 normal (10 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C32, Dic3, Dic3, C12, C12, D6, C2×C6, C2×C6, C2×Q8, C4○D4, C3×S3, C3×C6, C3×C6, Dic6, Dic6, C4×S3, C4×S3, D12, C2×Dic3, C3⋊D4, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, 2- 1+4, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, C62, C2×Dic6, C4○D12, C4○D12, D42S3, S3×Q8, C3×C4○D4, S3×Dic3, D6⋊S3, C322Q8, C3×Dic6, S3×C12, C3×D12, C3×C3⋊D4, C324Q8, C2×C3⋊Dic3, C6×C12, Q8○D12, S3×Dic6, D125S3, D6.4D6, C3×C4○D12, C2×C324Q8, D12.34D6
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, 2- 1+4, S32, S3×C23, C2×S32, Q8○D12, C22×S32, D12.34D6

Smallest permutation representation of D12.34D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 45)(14 44)(15 43)(16 42)(17 41)(18 40)(19 39)(20 38)(21 37)(22 48)(23 47)(24 46)
(1 8 3 10 5 12 7 2 9 4 11 6)(13 18 23 16 21 14 19 24 17 22 15 20)(25 30 35 28 33 26 31 36 29 34 27 32)(37 44 39 46 41 48 43 38 45 40 47 42)
(1 20 7 14)(2 21 8 15)(3 22 9 16)(4 23 10 17)(5 24 11 18)(6 13 12 19)(25 46 31 40)(26 47 32 41)(27 48 33 42)(28 37 34 43)(29 38 35 44)(30 39 36 45)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,29)(2,28)(3,27)(4,26)(5,25)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,48)(23,47)(24,46), (1,8,3,10,5,12,7,2,9,4,11,6)(13,18,23,16,21,14,19,24,17,22,15,20)(25,30,35,28,33,26,31,36,29,34,27,32)(37,44,39,46,41,48,43,38,45,40,47,42), (1,20,7,14)(2,21,8,15)(3,22,9,16)(4,23,10,17)(5,24,11,18)(6,13,12,19)(25,46,31,40)(26,47,32,41)(27,48,33,42)(28,37,34,43)(29,38,35,44)(30,39,36,45)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,29)(2,28)(3,27)(4,26)(5,25)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,48)(23,47)(24,46), (1,8,3,10,5,12,7,2,9,4,11,6)(13,18,23,16,21,14,19,24,17,22,15,20)(25,30,35,28,33,26,31,36,29,34,27,32)(37,44,39,46,41,48,43,38,45,40,47,42), (1,20,7,14)(2,21,8,15)(3,22,9,16)(4,23,10,17)(5,24,11,18)(6,13,12,19)(25,46,31,40)(26,47,32,41)(27,48,33,42)(28,37,34,43)(29,38,35,44)(30,39,36,45) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,45),(14,44),(15,43),(16,42),(17,41),(18,40),(19,39),(20,38),(21,37),(22,48),(23,47),(24,46)], [(1,8,3,10,5,12,7,2,9,4,11,6),(13,18,23,16,21,14,19,24,17,22,15,20),(25,30,35,28,33,26,31,36,29,34,27,32),(37,44,39,46,41,48,43,38,45,40,47,42)], [(1,20,7,14),(2,21,8,15),(3,22,9,16),(4,23,10,17),(5,24,11,18),(6,13,12,19),(25,46,31,40),(26,47,32,41),(27,48,33,42),(28,37,34,43),(29,38,35,44),(30,39,36,45)]])

45 conjugacy classes

class 1 2A2B2C2D2E2F3A3B3C4A4B4C4D4E4F4G4H4I4J6A6B6C···6G6H6I6J6K12A12B12C12D12E···12J12K12L12M12N
order12222223334444444444666···666661212121212···1212121212
size112666622422666618181818224···41212121222224···412121212

45 irreducible representations

dim111111222222444444
type++++++++++++-+++--
imageC1C2C2C2C2C2S3D6D6D6D6D62- 1+4S32C2×S32C2×S32Q8○D12D12.34D6
kernelD12.34D6S3×Dic6D125S3D6.4D6C3×C4○D12C2×C324Q8C4○D12Dic6C4×S3D12C3⋊D4C2×C12C32C2×C4C4C22C3C1
# reps144421224242112144

Matrix representation of D12.34D6 in GL4(𝔽13) generated by

7300
101000
0073
001010
,
0085
0005
5800
0800
,
61000
3300
0033
00106
,
001010
0037
61000
3300
G:=sub<GL(4,GF(13))| [7,10,0,0,3,10,0,0,0,0,7,10,0,0,3,10],[0,0,5,0,0,0,8,8,8,0,0,0,5,5,0,0],[6,3,0,0,10,3,0,0,0,0,3,10,0,0,3,6],[0,0,6,3,0,0,10,3,10,3,0,0,10,7,0,0] >;

D12.34D6 in GAP, Magma, Sage, TeX

D_{12}._{34}D_6
% in TeX

G:=Group("D12.34D6");
// GroupNames label

G:=SmallGroup(288,946);
// by ID

G=gap.SmallGroup(288,946);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,219,100,675,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=1,c^6=d^2=a^6,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=a^6*c^5>;
// generators/relations

׿
×
𝔽