Extensions 1→N→G→Q→1 with N=S3×C3⋊D4 and Q=C2

Direct product G=N×Q with N=S3×C3⋊D4 and Q=C2
dρLabelID
C2×S3×C3⋊D448C2xS3xC3:D4288,976

Semidirect products G=N:Q with N=S3×C3⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C3⋊D4)⋊1C2 = D1224D6φ: C2/C1C2 ⊆ Out S3×C3⋊D4484(S3xC3:D4):1C2288,955
(S3×C3⋊D4)⋊2C2 = S32×D4φ: C2/C1C2 ⊆ Out S3×C3⋊D4248+(S3xC3:D4):2C2288,958
(S3×C3⋊D4)⋊3C2 = S3×D42S3φ: C2/C1C2 ⊆ Out S3×C3⋊D4488-(S3xC3:D4):3C2288,959
(S3×C3⋊D4)⋊4C2 = D1212D6φ: C2/C1C2 ⊆ Out S3×C3⋊D4488-(S3xC3:D4):4C2288,961
(S3×C3⋊D4)⋊5C2 = D1213D6φ: C2/C1C2 ⊆ Out S3×C3⋊D4248+(S3xC3:D4):5C2288,962
(S3×C3⋊D4)⋊6C2 = C32⋊2+ 1+4φ: C2/C1C2 ⊆ Out S3×C3⋊D4244(S3xC3:D4):6C2288,978
(S3×C3⋊D4)⋊7C2 = S3×C4○D12φ: trivial image484(S3xC3:D4):7C2288,953


׿
×
𝔽