Extensions 1→N→G→Q→1 with N=Dic6⋊S3 and Q=C2

Direct product G=N×Q with N=Dic6⋊S3 and Q=C2
dρLabelID
C2×Dic6⋊S396C2xDic6:S3288,474

Semidirect products G=N:Q with N=Dic6⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic6⋊S31C2 = C249D6φ: C2/C1C2 ⊆ Out Dic6⋊S3484Dic6:S3:1C2288,444
Dic6⋊S32C2 = C246D6φ: C2/C1C2 ⊆ Out Dic6⋊S3484Dic6:S3:2C2288,446
Dic6⋊S33C2 = D245S3φ: C2/C1C2 ⊆ Out Dic6⋊S3484Dic6:S3:3C2288,458
Dic6⋊S34C2 = D12.4D6φ: C2/C1C2 ⊆ Out Dic6⋊S3484Dic6:S3:4C2288,459
Dic6⋊S35C2 = D1220D6φ: C2/C1C2 ⊆ Out Dic6⋊S3484Dic6:S3:5C2288,471
Dic6⋊S36C2 = D12.32D6φ: C2/C1C2 ⊆ Out Dic6⋊S3484Dic6:S3:6C2288,475
Dic6⋊S37C2 = Dic63D6φ: C2/C1C2 ⊆ Out Dic6⋊S3488+Dic6:S3:7C2288,573
Dic6⋊S38C2 = S3×D4.S3φ: C2/C1C2 ⊆ Out Dic6⋊S3488-Dic6:S3:8C2288,576
Dic6⋊S39C2 = D12.22D6φ: C2/C1C2 ⊆ Out Dic6⋊S3488-Dic6:S3:9C2288,581
Dic6⋊S310C2 = D12.7D6φ: C2/C1C2 ⊆ Out Dic6⋊S3488+Dic6:S3:10C2288,582
Dic6⋊S311C2 = S3×Q82S3φ: C2/C1C2 ⊆ Out Dic6⋊S3488+Dic6:S3:11C2288,586
Dic6⋊S312C2 = D12.11D6φ: C2/C1C2 ⊆ Out Dic6⋊S3968-Dic6:S3:12C2288,591
Dic6⋊S313C2 = D12.24D6φ: C2/C1C2 ⊆ Out Dic6⋊S3968-Dic6:S3:13C2288,594
Dic6⋊S314C2 = D12.13D6φ: C2/C1C2 ⊆ Out Dic6⋊S3488+Dic6:S3:14C2288,597
Dic6⋊S315C2 = D12.30D6φ: trivial image484Dic6:S3:15C2288,470


׿
×
𝔽