Copied to
clipboard

G = D245S3order 288 = 25·32

5th semidirect product of D24 and S3 acting via S3/C3=C2

metabelian, supersoluble, monomial

Aliases: D245S3, D12.3D6, C24.25D6, Dic125S3, Dic6.3D6, C8.17S32, C6.33(S3×D4), (C3×D24)⋊11C2, C327(C4○D8), D12⋊S33C2, C32(D83S3), C3⋊Dic3.43D4, C32(D24⋊C2), (C3×Dic12)⋊11C2, Dic6⋊S33C2, C12.75(C22×S3), (C3×C12).55C23, (C3×C24).25C22, (C3×D12).8C22, C2.10(D6⋊D6), (C3×Dic6).8C22, C324C8.23C22, (C8×C3⋊S3)⋊2C2, C4.70(C2×S32), (C2×C3⋊S3).44D4, (C3×C6).39(C2×D4), (C4×C3⋊S3).69C22, SmallGroup(288,458)

Series: Derived Chief Lower central Upper central

C1C3×C12 — D245S3
C1C3C32C3×C6C3×C12C3×D12D12⋊S3 — D245S3
C32C3×C6C3×C12 — D245S3
C1C2C4C8

Generators and relations for D245S3
 G = < a,b,c,d | a24=b2=c3=d2=1, bab=a-1, ac=ca, dad=a17, bc=cb, dbd=a4b, dcd=c-1 >

Subgroups: 562 in 135 conjugacy classes, 38 normal (26 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, Q8, C32, Dic3, C12, C12, D6, C2×C6, C2×C8, D8, SD16, Q16, C4○D4, C3×S3, C3⋊S3, C3×C6, C3⋊C8, C24, C24, Dic6, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C3×D4, C3×Q8, C4○D8, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, C2×C3⋊S3, S3×C8, D24, Dic12, D4.S3, Q82S3, C3×D8, C3×Q16, D42S3, Q83S3, C324C8, C3×C24, S3×Dic3, C3⋊D12, C3×Dic6, C3×D12, C4×C3⋊S3, D83S3, D24⋊C2, Dic6⋊S3, C3×D24, C3×Dic12, C8×C3⋊S3, D12⋊S3, D245S3
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C22×S3, C4○D8, S32, S3×D4, C2×S32, D83S3, D24⋊C2, D6⋊D6, D245S3

Smallest permutation representation of D245S3
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 47)(2 46)(3 45)(4 44)(5 43)(6 42)(7 41)(8 40)(9 39)(10 38)(11 37)(12 36)(13 35)(14 34)(15 33)(16 32)(17 31)(18 30)(19 29)(20 28)(21 27)(22 26)(23 25)(24 48)
(1 9 17)(2 10 18)(3 11 19)(4 12 20)(5 13 21)(6 14 22)(7 15 23)(8 16 24)(25 41 33)(26 42 34)(27 43 35)(28 44 36)(29 45 37)(30 46 38)(31 47 39)(32 48 40)
(2 18)(3 11)(5 21)(6 14)(8 24)(9 17)(12 20)(15 23)(25 29)(26 46)(27 39)(28 32)(30 42)(31 35)(33 45)(34 38)(36 48)(37 41)(40 44)(43 47)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,47)(2,46)(3,45)(4,44)(5,43)(6,42)(7,41)(8,40)(9,39)(10,38)(11,37)(12,36)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,48), (1,9,17)(2,10,18)(3,11,19)(4,12,20)(5,13,21)(6,14,22)(7,15,23)(8,16,24)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (2,18)(3,11)(5,21)(6,14)(8,24)(9,17)(12,20)(15,23)(25,29)(26,46)(27,39)(28,32)(30,42)(31,35)(33,45)(34,38)(36,48)(37,41)(40,44)(43,47)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,47)(2,46)(3,45)(4,44)(5,43)(6,42)(7,41)(8,40)(9,39)(10,38)(11,37)(12,36)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,48), (1,9,17)(2,10,18)(3,11,19)(4,12,20)(5,13,21)(6,14,22)(7,15,23)(8,16,24)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (2,18)(3,11)(5,21)(6,14)(8,24)(9,17)(12,20)(15,23)(25,29)(26,46)(27,39)(28,32)(30,42)(31,35)(33,45)(34,38)(36,48)(37,41)(40,44)(43,47) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,47),(2,46),(3,45),(4,44),(5,43),(6,42),(7,41),(8,40),(9,39),(10,38),(11,37),(12,36),(13,35),(14,34),(15,33),(16,32),(17,31),(18,30),(19,29),(20,28),(21,27),(22,26),(23,25),(24,48)], [(1,9,17),(2,10,18),(3,11,19),(4,12,20),(5,13,21),(6,14,22),(7,15,23),(8,16,24),(25,41,33),(26,42,34),(27,43,35),(28,44,36),(29,45,37),(30,46,38),(31,47,39),(32,48,40)], [(2,18),(3,11),(5,21),(6,14),(8,24),(9,17),(12,20),(15,23),(25,29),(26,46),(27,39),(28,32),(30,42),(31,35),(33,45),(34,38),(36,48),(37,41),(40,44),(43,47)]])

36 conjugacy classes

class 1 2A2B2C2D3A3B3C4A4B4C4D4E6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F24A···24H
order122223334444466666888812121212121224···24
size1112121822429912122242424221818444424244···4

36 irreducible representations

dim111111222222224444444
type++++++++++++++++-+
imageC1C2C2C2C2C2S3S3D4D4D6D6D6C4○D8S32S3×D4C2×S32D83S3D24⋊C2D6⋊D6D245S3
kernelD245S3Dic6⋊S3C3×D24C3×Dic12C8×C3⋊S3D12⋊S3D24Dic12C3⋊Dic3C2×C3⋊S3C24Dic6D12C32C8C6C4C3C3C2C1
# reps121112111122241212224

Matrix representation of D245S3 in GL6(𝔽73)

2200000
18100000
000100
0072100
000010
000001
,
51390000
55220000
0017200
0007200
000010
000001
,
100000
010000
001000
000100
0000721
0000720
,
100000
3720000
000100
001000
000001
000010

G:=sub<GL(6,GF(73))| [22,18,0,0,0,0,0,10,0,0,0,0,0,0,0,72,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[51,55,0,0,0,0,39,22,0,0,0,0,0,0,1,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[1,3,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

D245S3 in GAP, Magma, Sage, TeX

D_{24}\rtimes_5S_3
% in TeX

G:=Group("D24:5S3");
// GroupNames label

G:=SmallGroup(288,458);
// by ID

G=gap.SmallGroup(288,458);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,254,135,142,675,346,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^24=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^17,b*c=c*b,d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽