metabelian, supersoluble, monomial
Aliases: D24⋊5S3, D12.3D6, C24.25D6, Dic12⋊5S3, Dic6.3D6, C8.17S32, C6.33(S3×D4), (C3×D24)⋊11C2, C32⋊7(C4○D8), D12⋊S3⋊3C2, C3⋊2(D8⋊3S3), C3⋊Dic3.43D4, C3⋊2(D24⋊C2), (C3×Dic12)⋊11C2, Dic6⋊S3⋊3C2, C12.75(C22×S3), (C3×C12).55C23, (C3×C24).25C22, (C3×D12).8C22, C2.10(D6⋊D6), (C3×Dic6).8C22, C32⋊4C8.23C22, (C8×C3⋊S3)⋊2C2, C4.70(C2×S32), (C2×C3⋊S3).44D4, (C3×C6).39(C2×D4), (C4×C3⋊S3).69C22, SmallGroup(288,458)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D24⋊5S3
G = < a,b,c,d | a24=b2=c3=d2=1, bab=a-1, ac=ca, dad=a17, bc=cb, dbd=a4b, dcd=c-1 >
Subgroups: 562 in 135 conjugacy classes, 38 normal (26 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, Q8, C32, Dic3, C12, C12, D6, C2×C6, C2×C8, D8, SD16, Q16, C4○D4, C3×S3, C3⋊S3, C3×C6, C3⋊C8, C24, C24, Dic6, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C3×D4, C3×Q8, C4○D8, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, C2×C3⋊S3, S3×C8, D24, Dic12, D4.S3, Q8⋊2S3, C3×D8, C3×Q16, D4⋊2S3, Q8⋊3S3, C32⋊4C8, C3×C24, S3×Dic3, C3⋊D12, C3×Dic6, C3×D12, C4×C3⋊S3, D8⋊3S3, D24⋊C2, Dic6⋊S3, C3×D24, C3×Dic12, C8×C3⋊S3, D12⋊S3, D24⋊5S3
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C22×S3, C4○D8, S32, S3×D4, C2×S32, D8⋊3S3, D24⋊C2, D6⋊D6, D24⋊5S3
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 47)(2 46)(3 45)(4 44)(5 43)(6 42)(7 41)(8 40)(9 39)(10 38)(11 37)(12 36)(13 35)(14 34)(15 33)(16 32)(17 31)(18 30)(19 29)(20 28)(21 27)(22 26)(23 25)(24 48)
(1 9 17)(2 10 18)(3 11 19)(4 12 20)(5 13 21)(6 14 22)(7 15 23)(8 16 24)(25 41 33)(26 42 34)(27 43 35)(28 44 36)(29 45 37)(30 46 38)(31 47 39)(32 48 40)
(2 18)(3 11)(5 21)(6 14)(8 24)(9 17)(12 20)(15 23)(25 29)(26 46)(27 39)(28 32)(30 42)(31 35)(33 45)(34 38)(36 48)(37 41)(40 44)(43 47)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,47)(2,46)(3,45)(4,44)(5,43)(6,42)(7,41)(8,40)(9,39)(10,38)(11,37)(12,36)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,48), (1,9,17)(2,10,18)(3,11,19)(4,12,20)(5,13,21)(6,14,22)(7,15,23)(8,16,24)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (2,18)(3,11)(5,21)(6,14)(8,24)(9,17)(12,20)(15,23)(25,29)(26,46)(27,39)(28,32)(30,42)(31,35)(33,45)(34,38)(36,48)(37,41)(40,44)(43,47)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,47)(2,46)(3,45)(4,44)(5,43)(6,42)(7,41)(8,40)(9,39)(10,38)(11,37)(12,36)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,48), (1,9,17)(2,10,18)(3,11,19)(4,12,20)(5,13,21)(6,14,22)(7,15,23)(8,16,24)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (2,18)(3,11)(5,21)(6,14)(8,24)(9,17)(12,20)(15,23)(25,29)(26,46)(27,39)(28,32)(30,42)(31,35)(33,45)(34,38)(36,48)(37,41)(40,44)(43,47) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,47),(2,46),(3,45),(4,44),(5,43),(6,42),(7,41),(8,40),(9,39),(10,38),(11,37),(12,36),(13,35),(14,34),(15,33),(16,32),(17,31),(18,30),(19,29),(20,28),(21,27),(22,26),(23,25),(24,48)], [(1,9,17),(2,10,18),(3,11,19),(4,12,20),(5,13,21),(6,14,22),(7,15,23),(8,16,24),(25,41,33),(26,42,34),(27,43,35),(28,44,36),(29,45,37),(30,46,38),(31,47,39),(32,48,40)], [(2,18),(3,11),(5,21),(6,14),(8,24),(9,17),(12,20),(15,23),(25,29),(26,46),(27,39),(28,32),(30,42),(31,35),(33,45),(34,38),(36,48),(37,41),(40,44),(43,47)]])
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 12F | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 12 | 12 | 18 | 2 | 2 | 4 | 2 | 9 | 9 | 12 | 12 | 2 | 2 | 4 | 24 | 24 | 2 | 2 | 18 | 18 | 4 | 4 | 4 | 4 | 24 | 24 | 4 | ··· | 4 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D4 | D4 | D6 | D6 | D6 | C4○D8 | S32 | S3×D4 | C2×S32 | D8⋊3S3 | D24⋊C2 | D6⋊D6 | D24⋊5S3 |
kernel | D24⋊5S3 | Dic6⋊S3 | C3×D24 | C3×Dic12 | C8×C3⋊S3 | D12⋊S3 | D24 | Dic12 | C3⋊Dic3 | C2×C3⋊S3 | C24 | Dic6 | D12 | C32 | C8 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 2 | 1 | 2 | 2 | 2 | 4 |
Matrix representation of D24⋊5S3 ►in GL6(𝔽73)
22 | 0 | 0 | 0 | 0 | 0 |
18 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
51 | 39 | 0 | 0 | 0 | 0 |
55 | 22 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
3 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(73))| [22,18,0,0,0,0,0,10,0,0,0,0,0,0,0,72,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[51,55,0,0,0,0,39,22,0,0,0,0,0,0,1,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[1,3,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
D24⋊5S3 in GAP, Magma, Sage, TeX
D_{24}\rtimes_5S_3
% in TeX
G:=Group("D24:5S3");
// GroupNames label
G:=SmallGroup(288,458);
// by ID
G=gap.SmallGroup(288,458);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,254,135,142,675,346,80,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^24=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^17,b*c=c*b,d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations