Extensions 1→N→G→Q→1 with N=D18 and Q=C2×C4

Direct product G=N×Q with N=D18 and Q=C2×C4
dρLabelID
C22×C4×D9144C2^2xC4xD9288,353

Semidirect products G=N:Q with N=D18 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
D181(C2×C4) = C4×D36φ: C2×C4/C4C2 ⊆ Out D18144D18:1(C2xC4)288,83
D182(C2×C4) = Dic94D4φ: C2×C4/C4C2 ⊆ Out D18144D18:2(C2xC4)288,91
D183(C2×C4) = D36⋊C4φ: C2×C4/C4C2 ⊆ Out D18144D18:3(C2xC4)288,103
D184(C2×C4) = C4×C9⋊D4φ: C2×C4/C4C2 ⊆ Out D18144D18:4(C2xC4)288,138
D185(C2×C4) = C22⋊C4×D9φ: C2×C4/C22C2 ⊆ Out D1872D18:5(C2xC4)288,90
D186(C2×C4) = C2×D18⋊C4φ: C2×C4/C22C2 ⊆ Out D18144D18:6(C2xC4)288,137

Non-split extensions G=N.Q with N=D18 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
D18.1(C2×C4) = D36.2C4φ: C2×C4/C4C2 ⊆ Out D181442D18.1(C2xC4)288,112
D18.2(C2×C4) = D36.C4φ: C2×C4/C4C2 ⊆ Out D181444D18.2(C2xC4)288,117
D18.3(C2×C4) = C422D9φ: C2×C4/C22C2 ⊆ Out D18144D18.3(C2xC4)288,82
D18.4(C2×C4) = C4⋊C47D9φ: C2×C4/C22C2 ⊆ Out D18144D18.4(C2xC4)288,102
D18.5(C2×C4) = C2×C8⋊D9φ: C2×C4/C22C2 ⊆ Out D18144D18.5(C2xC4)288,111
D18.6(C2×C4) = M4(2)×D9φ: C2×C4/C22C2 ⊆ Out D18724D18.6(C2xC4)288,116
D18.7(C2×C4) = C42×D9φ: trivial image144D18.7(C2xC4)288,81
D18.8(C2×C4) = C4⋊C4×D9φ: trivial image144D18.8(C2xC4)288,101
D18.9(C2×C4) = C2×C8×D9φ: trivial image144D18.9(C2xC4)288,110

׿
×
𝔽