Extensions 1→N→G→Q→1 with N=C2 and Q=C3×C4○D12

Direct product G=N×Q with N=C2 and Q=C3×C4○D12
dρLabelID
C6×C4○D1248C6xC4oD12288,991


Non-split extensions G=N.Q with N=C2 and Q=C3×C4○D12
extensionφ:Q→Aut NdρLabelID
C2.1(C3×C4○D12) = C12×Dic6central extension (φ=1)96C2.1(C3xC4oD12)288,639
C2.2(C3×C4○D12) = C3×C422S3central extension (φ=1)96C2.2(C3xC4oD12)288,643
C2.3(C3×C4○D12) = C12×D12central extension (φ=1)96C2.3(C3xC4oD12)288,644
C2.4(C3×C4○D12) = C3×C23.26D6central extension (φ=1)48C2.4(C3xC4oD12)288,697
C2.5(C3×C4○D12) = C12×C3⋊D4central extension (φ=1)48C2.5(C3xC4oD12)288,699
C2.6(C3×C4○D12) = C3×C12.6Q8central stem extension (φ=1)96C2.6(C3xC4oD12)288,641
C2.7(C3×C4○D12) = C3×C427S3central stem extension (φ=1)96C2.7(C3xC4oD12)288,646
C2.8(C3×C4○D12) = C3×C423S3central stem extension (φ=1)96C2.8(C3xC4oD12)288,647
C2.9(C3×C4○D12) = C3×C23.8D6central stem extension (φ=1)48C2.9(C3xC4oD12)288,650
C2.10(C3×C4○D12) = C3×C23.9D6central stem extension (φ=1)48C2.10(C3xC4oD12)288,654
C2.11(C3×C4○D12) = C3×Dic3⋊D4central stem extension (φ=1)48C2.11(C3xC4oD12)288,655
C2.12(C3×C4○D12) = C3×C23.11D6central stem extension (φ=1)48C2.12(C3xC4oD12)288,656
C2.13(C3×C4○D12) = C3×Dic3.Q8central stem extension (φ=1)96C2.13(C3xC4oD12)288,660
C2.14(C3×C4○D12) = C3×D6.D4central stem extension (φ=1)96C2.14(C3xC4oD12)288,665
C2.15(C3×C4○D12) = C3×D6⋊Q8central stem extension (φ=1)96C2.15(C3xC4oD12)288,667
C2.16(C3×C4○D12) = C3×C4⋊C4⋊S3central stem extension (φ=1)96C2.16(C3xC4oD12)288,669
C2.17(C3×C4○D12) = C3×C12.48D4central stem extension (φ=1)48C2.17(C3xC4oD12)288,695
C2.18(C3×C4○D12) = C3×C23.28D6central stem extension (φ=1)48C2.18(C3xC4oD12)288,700
C2.19(C3×C4○D12) = C3×C127D4central stem extension (φ=1)48C2.19(C3xC4oD12)288,701

׿
×
𝔽