Copied to
clipboard

G = C12×C3⋊D4order 288 = 25·32

Direct product of C12 and C3⋊D4

direct product, metabelian, supersoluble, monomial

Aliases: C12×C3⋊D4, C62.196C23, C34(D4×C12), C128(C3×D4), D6⋊C418C6, D64(C2×C12), (C3×C12)⋊24D4, C6.41(C6×D4), C3222(C4×D4), C224(S3×C12), C6218(C2×C4), (C22×C12)⋊6S3, Dic3⋊C418C6, (C22×C12)⋊13C6, (C4×Dic3)⋊16C6, Dic32(C2×C12), (C2×C12).352D6, C23.32(S3×C6), (Dic3×C12)⋊34C2, C6.D414C6, C6.19(C22×C12), (C22×C6).127D6, C6.126(C4○D12), (C6×C12).352C22, (C2×C62).99C22, (C6×Dic3).135C22, (S3×C2×C4)⋊14C6, (C2×C6×C12)⋊14C2, (S3×C2×C12)⋊28C2, (C2×C6)⋊13(C4×S3), (C2×C6)⋊8(C2×C12), C2.20(S3×C2×C12), C6.119(S3×C2×C4), C2.3(C6×C3⋊D4), (S3×C6)⋊17(C2×C4), (C3×D6⋊C4)⋊39C2, (C22×C4)⋊6(C3×S3), C6.16(C3×C4○D4), C2.5(C3×C4○D12), (C2×C3⋊D4).7C6, C22.24(S3×C2×C6), (C2×C4).103(S3×C6), (C3×C6).252(C2×D4), (C6×C3⋊D4).14C2, C6.142(C2×C3⋊D4), (S3×C2×C6).98C22, (C2×C12).132(C2×C6), (C3×Dic3⋊C4)⋊40C2, (C3×Dic3)⋊11(C2×C4), (C2×C6).51(C22×C6), (C3×C6).91(C22×C4), (C22×C6).63(C2×C6), (C3×C6).104(C4○D4), (C3×C6.D4)⋊30C2, (C22×S3).25(C2×C6), (C2×C6).329(C22×S3), (C2×Dic3).35(C2×C6), SmallGroup(288,699)

Series: Derived Chief Lower central Upper central

C1C6 — C12×C3⋊D4
C1C3C6C2×C6C62S3×C2×C6C6×C3⋊D4 — C12×C3⋊D4
C3C6 — C12×C3⋊D4
C1C2×C12C22×C12

Generators and relations for C12×C3⋊D4
 G = < a,b,c,d | a12=b3=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 442 in 215 conjugacy classes, 90 normal (58 characteristic)
C1, C2 [×3], C2 [×4], C3 [×2], C3, C4 [×2], C4 [×5], C22, C22 [×2], C22 [×6], S3 [×2], C6 [×6], C6 [×13], C2×C4 [×2], C2×C4 [×7], D4 [×4], C23, C23, C32, Dic3 [×2], Dic3 [×2], C12 [×4], C12 [×10], D6 [×2], D6 [×2], C2×C6 [×2], C2×C6 [×4], C2×C6 [×15], C42, C22⋊C4 [×2], C4⋊C4, C22×C4, C22×C4, C2×D4, C3×S3 [×2], C3×C6 [×3], C3×C6 [×2], C4×S3 [×2], C2×Dic3 [×3], C3⋊D4 [×4], C2×C12 [×4], C2×C12 [×15], C3×D4 [×4], C22×S3, C22×C6 [×2], C22×C6 [×2], C4×D4, C3×Dic3 [×2], C3×Dic3 [×2], C3×C12 [×2], C3×C12, S3×C6 [×2], S3×C6 [×2], C62, C62 [×2], C62 [×2], C4×Dic3, Dic3⋊C4, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4 [×2], C3×C4⋊C4, S3×C2×C4, C2×C3⋊D4, C22×C12 [×2], C22×C12 [×2], C6×D4, S3×C12 [×2], C6×Dic3 [×3], C3×C3⋊D4 [×4], C6×C12 [×2], C6×C12 [×2], S3×C2×C6, C2×C62, C4×C3⋊D4, D4×C12, Dic3×C12, C3×Dic3⋊C4, C3×D6⋊C4, C3×C6.D4, S3×C2×C12, C6×C3⋊D4, C2×C6×C12, C12×C3⋊D4
Quotients: C1, C2 [×7], C3, C4 [×4], C22 [×7], S3, C6 [×7], C2×C4 [×6], D4 [×2], C23, C12 [×4], D6 [×3], C2×C6 [×7], C22×C4, C2×D4, C4○D4, C3×S3, C4×S3 [×2], C3⋊D4 [×2], C2×C12 [×6], C3×D4 [×2], C22×S3, C22×C6, C4×D4, S3×C6 [×3], S3×C2×C4, C4○D12, C2×C3⋊D4, C22×C12, C6×D4, C3×C4○D4, S3×C12 [×2], C3×C3⋊D4 [×2], S3×C2×C6, C4×C3⋊D4, D4×C12, S3×C2×C12, C3×C4○D12, C6×C3⋊D4, C12×C3⋊D4

Smallest permutation representation of C12×C3⋊D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 13 32 45)(2 14 33 46)(3 15 34 47)(4 16 35 48)(5 17 36 37)(6 18 25 38)(7 19 26 39)(8 20 27 40)(9 21 28 41)(10 22 29 42)(11 23 30 43)(12 24 31 44)
(1 39)(2 40)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 37)(12 38)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)(21 34)(22 35)(23 36)(24 25)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,13,32,45)(2,14,33,46)(3,15,34,47)(4,16,35,48)(5,17,36,37)(6,18,25,38)(7,19,26,39)(8,20,27,40)(9,21,28,41)(10,22,29,42)(11,23,30,43)(12,24,31,44), (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,37)(12,38)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,25)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,13,32,45)(2,14,33,46)(3,15,34,47)(4,16,35,48)(5,17,36,37)(6,18,25,38)(7,19,26,39)(8,20,27,40)(9,21,28,41)(10,22,29,42)(11,23,30,43)(12,24,31,44), (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,37)(12,38)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,25) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,13,32,45),(2,14,33,46),(3,15,34,47),(4,16,35,48),(5,17,36,37),(6,18,25,38),(7,19,26,39),(8,20,27,40),(9,21,28,41),(10,22,29,42),(11,23,30,43),(12,24,31,44)], [(1,39),(2,40),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,37),(12,38),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33),(21,34),(22,35),(23,36),(24,25)])

108 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E4A4B4C4D4E4F4G···4L6A···6F6G···6AE6AF6AG6AH6AI12A···12H12I···12AJ12AK···12AV
order12222222333334444444···46···66···6666612···1212···1212···12
size11112266112221111226···61···12···266661···12···26···6

108 irreducible representations

dim1111111111111111112222222222222222
type++++++++++++
imageC1C2C2C2C2C2C2C2C3C4C6C6C6C6C6C6C6C12S3D4D6D6C4○D4C3×S3C3⋊D4C3×D4C4×S3S3×C6S3×C6C4○D12C3×C4○D4C3×C3⋊D4S3×C12C3×C4○D12
kernelC12×C3⋊D4Dic3×C12C3×Dic3⋊C4C3×D6⋊C4C3×C6.D4S3×C2×C12C6×C3⋊D4C2×C6×C12C4×C3⋊D4C3×C3⋊D4C4×Dic3Dic3⋊C4D6⋊C4C6.D4S3×C2×C4C2×C3⋊D4C22×C12C3⋊D4C22×C12C3×C12C2×C12C22×C6C3×C6C22×C4C12C12C2×C6C2×C4C23C6C6C4C22C2
# reps11111111282222222161221224444244888

Matrix representation of C12×C3⋊D4 in GL3(𝔽13) generated by

500
070
007
,
100
030
099
,
100
015
01012
,
100
0128
001
G:=sub<GL(3,GF(13))| [5,0,0,0,7,0,0,0,7],[1,0,0,0,3,9,0,0,9],[1,0,0,0,1,10,0,5,12],[1,0,0,0,12,0,0,8,1] >;

C12×C3⋊D4 in GAP, Magma, Sage, TeX

C_{12}\times C_3\rtimes D_4
% in TeX

G:=Group("C12xC3:D4");
// GroupNames label

G:=SmallGroup(288,699);
// by ID

G=gap.SmallGroup(288,699);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,701,142,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^3=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽