Copied to
clipboard

G = C6xC4oD12order 288 = 25·32

Direct product of C6 and C4oD12

direct product, metabelian, supersoluble, monomial

Aliases: C6xC4oD12, C62.268C23, (C2xC12):32D6, (C6xD12):30C2, (C2xD12):14C6, D12:12(C2xC6), C6.4(C23xC6), (C22xC12):17S3, (C22xC12):12C6, (C6xC12):33C22, Dic6:11(C2xC6), (C2xDic6):15C6, (C6xDic6):31C2, C23.36(S3xC6), C6.72(S3xC23), (C3xC6).41C24, D6.1(C22xC6), (S3xC12):23C22, (C3xD12):40C22, (S3xC6).28C23, C12.43(C22xC6), (C22xC6).132D6, (C3xC12).183C23, C12.222(C22xS3), (C3xDic6):38C22, Dic3.2(C22xC6), (C2xC62).118C22, (C3xDic3).29C23, (C6xDic3).163C22, (S3xC2xC4):15C6, (C2xC6xC12):11C2, C3:1(C6xC4oD4), C6:1(C3xC4oD4), C4.43(S3xC2xC6), (S3xC2xC12):31C2, (C4xS3):6(C2xC6), (C2xC4):10(S3xC6), C3:D4:6(C2xC6), (C2xC12):13(C2xC6), C22.5(S3xC2xC6), C2.5(S3xC22xC6), (C3xC6):7(C4oD4), (C6xC3:D4):26C2, (C2xC3:D4):12C6, C32:13(C2xC4oD4), (C22xC4):10(C3xS3), (C3xC3:D4):19C22, (S3xC2xC6).109C22, (C22xC6).71(C2xC6), (C2xC6).70(C22xC6), (C22xS3).29(C2xC6), (C2xC6).164(C22xS3), (C2xDic3).44(C2xC6), SmallGroup(288,991)

Series: Derived Chief Lower central Upper central

C1C6 — C6xC4oD12
C1C3C6C3xC6S3xC6S3xC2xC6S3xC2xC12 — C6xC4oD12
C3C6 — C6xC4oD12
C1C2xC12C22xC12

Generators and relations for C6xC4oD12
 G = < a,b,c,d | a6=b4=d2=1, c6=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c5 >

Subgroups: 698 in 355 conjugacy classes, 178 normal (34 characteristic)
C1, C2, C2, C2, C3, C3, C4, C4, C22, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C32, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C2xC6, C22xC4, C22xC4, C2xD4, C2xQ8, C4oD4, C3xS3, C3xC6, C3xC6, C3xC6, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C2xC12, C3xD4, C3xQ8, C22xS3, C22xC6, C22xC6, C2xC4oD4, C3xDic3, C3xC12, S3xC6, S3xC6, C62, C62, C62, C2xDic6, S3xC2xC4, C2xD12, C4oD12, C2xC3:D4, C22xC12, C22xC12, C6xD4, C6xQ8, C3xC4oD4, C3xDic6, S3xC12, C3xD12, C6xDic3, C3xC3:D4, C6xC12, C6xC12, S3xC2xC6, C2xC62, C2xC4oD12, C6xC4oD4, C6xDic6, S3xC2xC12, C6xD12, C3xC4oD12, C6xC3:D4, C2xC6xC12, C6xC4oD12
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2xC6, C4oD4, C24, C3xS3, C22xS3, C22xC6, C2xC4oD4, S3xC6, C4oD12, C3xC4oD4, S3xC23, C23xC6, S3xC2xC6, C2xC4oD12, C6xC4oD4, C3xC4oD12, S3xC22xC6, C6xC4oD12

Smallest permutation representation of C6xC4oD12
On 48 points
Generators in S48
(1 22 5 14 9 18)(2 23 6 15 10 19)(3 24 7 16 11 20)(4 13 8 17 12 21)(25 41 33 37 29 45)(26 42 34 38 30 46)(27 43 35 39 31 47)(28 44 36 40 32 48)
(1 10 7 4)(2 11 8 5)(3 12 9 6)(13 22 19 16)(14 23 20 17)(15 24 21 18)(25 28 31 34)(26 29 32 35)(27 30 33 36)(37 40 43 46)(38 41 44 47)(39 42 45 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 48)(2 47)(3 46)(4 45)(5 44)(6 43)(7 42)(8 41)(9 40)(10 39)(11 38)(12 37)(13 25)(14 36)(15 35)(16 34)(17 33)(18 32)(19 31)(20 30)(21 29)(22 28)(23 27)(24 26)

G:=sub<Sym(48)| (1,22,5,14,9,18)(2,23,6,15,10,19)(3,24,7,16,11,20)(4,13,8,17,12,21)(25,41,33,37,29,45)(26,42,34,38,30,46)(27,43,35,39,31,47)(28,44,36,40,32,48), (1,10,7,4)(2,11,8,5)(3,12,9,6)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,28,31,34)(26,29,32,35)(27,30,33,36)(37,40,43,46)(38,41,44,47)(39,42,45,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,25)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,28)(23,27)(24,26)>;

G:=Group( (1,22,5,14,9,18)(2,23,6,15,10,19)(3,24,7,16,11,20)(4,13,8,17,12,21)(25,41,33,37,29,45)(26,42,34,38,30,46)(27,43,35,39,31,47)(28,44,36,40,32,48), (1,10,7,4)(2,11,8,5)(3,12,9,6)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,28,31,34)(26,29,32,35)(27,30,33,36)(37,40,43,46)(38,41,44,47)(39,42,45,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,25)(14,36)(15,35)(16,34)(17,33)(18,32)(19,31)(20,30)(21,29)(22,28)(23,27)(24,26) );

G=PermutationGroup([[(1,22,5,14,9,18),(2,23,6,15,10,19),(3,24,7,16,11,20),(4,13,8,17,12,21),(25,41,33,37,29,45),(26,42,34,38,30,46),(27,43,35,39,31,47),(28,44,36,40,32,48)], [(1,10,7,4),(2,11,8,5),(3,12,9,6),(13,22,19,16),(14,23,20,17),(15,24,21,18),(25,28,31,34),(26,29,32,35),(27,30,33,36),(37,40,43,46),(38,41,44,47),(39,42,45,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,48),(2,47),(3,46),(4,45),(5,44),(6,43),(7,42),(8,41),(9,40),(10,39),(11,38),(12,37),(13,25),(14,36),(15,35),(16,34),(17,33),(18,32),(19,31),(20,30),(21,29),(22,28),(23,27),(24,26)]])

108 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I3A3B3C3D3E4A4B4C4D4E4F4G4H4I4J6A···6F6G···6AE6AF···6AM12A···12H12I···12AJ12AK···12AR
order12222222223333344444444446···66···66···612···1212···1212···12
size11112266661122211112266661···12···26···61···12···26···6

108 irreducible representations

dim111111111111112222222222
type++++++++++
imageC1C2C2C2C2C2C2C3C6C6C6C6C6C6S3D6D6C4oD4C3xS3S3xC6S3xC6C4oD12C3xC4oD4C3xC4oD12
kernelC6xC4oD12C6xDic6S3xC2xC12C6xD12C3xC4oD12C6xC3:D4C2xC6xC12C2xC4oD12C2xDic6S3xC2xC4C2xD12C4oD12C2xC3:D4C22xC12C22xC12C2xC12C22xC6C3xC6C22xC4C2xC4C23C6C6C2
# reps112182122421642161421228816

Matrix representation of C6xC4oD12 in GL3(F13) generated by

1200
090
009
,
100
050
005
,
1200
020
007
,
1200
007
020
G:=sub<GL(3,GF(13))| [12,0,0,0,9,0,0,0,9],[1,0,0,0,5,0,0,0,5],[12,0,0,0,2,0,0,0,7],[12,0,0,0,0,2,0,7,0] >;

C6xC4oD12 in GAP, Magma, Sage, TeX

C_6\times C_4\circ D_{12}
% in TeX

G:=Group("C6xC4oD12");
// GroupNames label

G:=SmallGroup(288,991);
// by ID

G=gap.SmallGroup(288,991);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-3,268,1571,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^4=d^2=1,c^6=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<