Extensions 1→N→G→Q→1 with N=C3×D42S3 and Q=C2

Direct product G=N×Q with N=C3×D42S3 and Q=C2
dρLabelID
C6×D42S348C6xD4:2S3288,993

Semidirect products G=N:Q with N=C3×D42S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D42S3)⋊1C2 = Dic63D6φ: C2/C1C2 ⊆ Out C3×D42S3488+(C3xD4:2S3):1C2288,573
(C3×D42S3)⋊2C2 = D12.22D6φ: C2/C1C2 ⊆ Out C3×D42S3488-(C3xD4:2S3):2C2288,581
(C3×D42S3)⋊3C2 = Dic6.20D6φ: C2/C1C2 ⊆ Out C3×D42S3488+(C3xD4:2S3):3C2288,583
(C3×D42S3)⋊4C2 = C3×D8⋊S3φ: C2/C1C2 ⊆ Out C3×D42S3484(C3xD4:2S3):4C2288,682
(C3×D42S3)⋊5C2 = C3×D83S3φ: C2/C1C2 ⊆ Out C3×D42S3484(C3xD4:2S3):5C2288,683
(C3×D42S3)⋊6C2 = C3×Q8.7D6φ: C2/C1C2 ⊆ Out C3×D42S3484(C3xD4:2S3):6C2288,687
(C3×D42S3)⋊7C2 = Dic6.24D6φ: C2/C1C2 ⊆ Out C3×D42S3488-(C3xD4:2S3):7C2288,957
(C3×D42S3)⋊8C2 = S3×D42S3φ: C2/C1C2 ⊆ Out C3×D42S3488-(C3xD4:2S3):8C2288,959
(C3×D42S3)⋊9C2 = Dic612D6φ: C2/C1C2 ⊆ Out C3×D42S3248+(C3xD4:2S3):9C2288,960
(C3×D42S3)⋊10C2 = D1213D6φ: C2/C1C2 ⊆ Out C3×D42S3248+(C3xD4:2S3):10C2288,962
(C3×D42S3)⋊11C2 = C3×D46D6φ: C2/C1C2 ⊆ Out C3×D42S3244(C3xD4:2S3):11C2288,994
(C3×D42S3)⋊12C2 = C3×Q8○D12φ: C2/C1C2 ⊆ Out C3×D42S3484(C3xD4:2S3):12C2288,1000
(C3×D42S3)⋊13C2 = C3×S3×C4○D4φ: trivial image484(C3xD4:2S3):13C2288,998

Non-split extensions G=N.Q with N=C3×D42S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D42S3).1C2 = Dic6.19D6φ: C2/C1C2 ⊆ Out C3×D42S3488-(C3xD4:2S3).1C2288,577
(C3×D42S3).2C2 = C3×D4.D6φ: C2/C1C2 ⊆ Out C3×D42S3484(C3xD4:2S3).2C2288,686

׿
×
𝔽