Extensions 1→N→G→Q→1 with N=C3×S3×Q8 and Q=C2

Direct product G=N×Q with N=C3×S3×Q8 and Q=C2
dρLabelID
S3×C6×Q896S3xC6xQ8288,995

Semidirect products G=N:Q with N=C3×S3×Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×S3×Q8)⋊1C2 = S3×Q82S3φ: C2/C1C2 ⊆ Out C3×S3×Q8488+(C3xS3xQ8):1C2288,586
(C3×S3×Q8)⋊2C2 = D12.24D6φ: C2/C1C2 ⊆ Out C3×S3×Q8968-(C3xS3xQ8):2C2288,594
(C3×S3×Q8)⋊3C2 = Dic6.22D6φ: C2/C1C2 ⊆ Out C3×S3×Q8488+(C3xS3xQ8):3C2288,596
(C3×S3×Q8)⋊4C2 = C3×S3×SD16φ: C2/C1C2 ⊆ Out C3×S3×Q8484(C3xS3xQ8):4C2288,684
(C3×S3×Q8)⋊5C2 = C3×D4.D6φ: C2/C1C2 ⊆ Out C3×S3×Q8484(C3xS3xQ8):5C2288,686
(C3×S3×Q8)⋊6C2 = C3×Q16⋊S3φ: C2/C1C2 ⊆ Out C3×S3×Q8964(C3xS3xQ8):6C2288,689
(C3×S3×Q8)⋊7C2 = D12.25D6φ: C2/C1C2 ⊆ Out C3×S3×Q8488-(C3xS3xQ8):7C2288,963
(C3×S3×Q8)⋊8C2 = Dic6.26D6φ: C2/C1C2 ⊆ Out C3×S3×Q8488+(C3xS3xQ8):8C2288,964
(C3×S3×Q8)⋊9C2 = S32×Q8φ: C2/C1C2 ⊆ Out C3×S3×Q8488-(C3xS3xQ8):9C2288,965
(C3×S3×Q8)⋊10C2 = S3×Q83S3φ: C2/C1C2 ⊆ Out C3×S3×Q8488+(C3xS3xQ8):10C2288,966
(C3×S3×Q8)⋊11C2 = C3×Q8.15D6φ: C2/C1C2 ⊆ Out C3×S3×Q8484(C3xS3xQ8):11C2288,997
(C3×S3×Q8)⋊12C2 = C3×Q8○D12φ: C2/C1C2 ⊆ Out C3×S3×Q8484(C3xS3xQ8):12C2288,1000
(C3×S3×Q8)⋊13C2 = C3×S3×C4○D4φ: trivial image484(C3xS3xQ8):13C2288,998

Non-split extensions G=N.Q with N=C3×S3×Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×S3×Q8).1C2 = S3×C3⋊Q16φ: C2/C1C2 ⊆ Out C3×S3×Q8968-(C3xS3xQ8).1C2288,590
(C3×S3×Q8).2C2 = C3×S3×Q16φ: C2/C1C2 ⊆ Out C3×S3×Q8964(C3xS3xQ8).2C2288,688

׿
×
𝔽