metabelian, supersoluble, monomial
Aliases: Dic6.26D6, C32⋊52- 1+4, (S3×Q8)⋊8S3, Q8.19S32, (C4×S3).17D6, (C3×Q8).47D6, D6.D6⋊9C2, (C3×C6).23C24, C6.23(S3×C23), D6.6D6⋊11C2, C12.26D6⋊6C2, (S3×C6).25C23, C12.35(C22×S3), (C3×C12).35C23, D6.23(C22×S3), Dic3.D6⋊13C2, (S3×C12).34C22, C3⋊2(Q8.15D6), C3⋊D12.4C22, C3⋊Dic3.40C23, C6.D6.7C22, C12⋊S3.21C22, D6⋊S3.10C22, (C3×Dic6).31C22, (C3×Dic3).16C23, Dic3.12(C22×S3), C32⋊2Q8.11C22, (Q8×C32).22C22, (C3×S3×Q8)⋊8C2, C4.35(C2×S32), C2.25(C22×S32), (C4×C3⋊S3).45C22, (C2×C3⋊S3).27C23, SmallGroup(288,964)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic6.26D6
G = < a,b,c,d | a12=c6=1, b2=d2=a6, bab-1=a-1, cac-1=dad-1=a5, bc=cb, dbd-1=a6b, dcd-1=a6c-1 >
Subgroups: 1082 in 312 conjugacy classes, 108 normal (10 characteristic)
C1, C2, C2 [×5], C3 [×2], C3, C4 [×3], C4 [×7], C22 [×5], S3 [×11], C6 [×2], C6 [×3], C2×C4 [×15], D4 [×10], Q8, Q8 [×9], C32, Dic3 [×6], Dic3 [×3], C12 [×6], C12 [×9], D6 [×2], D6 [×9], C2×C6 [×2], C2×Q8 [×5], C4○D4 [×10], C3×S3 [×2], C3⋊S3 [×3], C3×C6, Dic6 [×6], Dic6 [×6], C4×S3 [×6], C4×S3 [×21], D12 [×15], C3⋊D4 [×8], C2×C12 [×6], C3×Q8 [×2], C3×Q8 [×7], 2- 1+4, C3×Dic3 [×6], C3⋊Dic3, C3×C12 [×3], S3×C6 [×2], C2×C3⋊S3 [×3], C4○D12 [×12], S3×Q8 [×2], S3×Q8 [×6], Q8⋊3S3 [×9], C6×Q8 [×2], C6.D6 [×6], D6⋊S3, C3⋊D12 [×6], C32⋊2Q8 [×3], C3×Dic6 [×6], S3×C12 [×6], C4×C3⋊S3 [×3], C12⋊S3 [×3], Q8×C32, Q8.15D6 [×2], Dic3.D6 [×3], D6.D6 [×3], D6.6D6 [×6], C3×S3×Q8 [×2], C12.26D6, Dic6.26D6
Quotients: C1, C2 [×15], C22 [×35], S3 [×2], C23 [×15], D6 [×14], C24, C22×S3 [×14], 2- 1+4, S32, S3×C23 [×2], C2×S32 [×3], Q8.15D6 [×2], C22×S32, Dic6.26D6
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 39 7 45)(2 38 8 44)(3 37 9 43)(4 48 10 42)(5 47 11 41)(6 46 12 40)(13 26 19 32)(14 25 20 31)(15 36 21 30)(16 35 22 29)(17 34 23 28)(18 33 24 27)
(1 29 9 33 5 25)(2 34 10 26 6 30)(3 27 11 31 7 35)(4 32 12 36 8 28)(13 40 21 44 17 48)(14 45 22 37 18 41)(15 38 23 42 19 46)(16 43 24 47 20 39)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 16 19 22)(14 21 20 15)(17 24 23 18)(25 36 31 30)(26 29 32 35)(27 34 33 28)(37 42 43 48)(38 47 44 41)(39 40 45 46)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,39,7,45)(2,38,8,44)(3,37,9,43)(4,48,10,42)(5,47,11,41)(6,46,12,40)(13,26,19,32)(14,25,20,31)(15,36,21,30)(16,35,22,29)(17,34,23,28)(18,33,24,27), (1,29,9,33,5,25)(2,34,10,26,6,30)(3,27,11,31,7,35)(4,32,12,36,8,28)(13,40,21,44,17,48)(14,45,22,37,18,41)(15,38,23,42,19,46)(16,43,24,47,20,39), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,16,19,22)(14,21,20,15)(17,24,23,18)(25,36,31,30)(26,29,32,35)(27,34,33,28)(37,42,43,48)(38,47,44,41)(39,40,45,46)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,39,7,45)(2,38,8,44)(3,37,9,43)(4,48,10,42)(5,47,11,41)(6,46,12,40)(13,26,19,32)(14,25,20,31)(15,36,21,30)(16,35,22,29)(17,34,23,28)(18,33,24,27), (1,29,9,33,5,25)(2,34,10,26,6,30)(3,27,11,31,7,35)(4,32,12,36,8,28)(13,40,21,44,17,48)(14,45,22,37,18,41)(15,38,23,42,19,46)(16,43,24,47,20,39), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,16,19,22)(14,21,20,15)(17,24,23,18)(25,36,31,30)(26,29,32,35)(27,34,33,28)(37,42,43,48)(38,47,44,41)(39,40,45,46) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,39,7,45),(2,38,8,44),(3,37,9,43),(4,48,10,42),(5,47,11,41),(6,46,12,40),(13,26,19,32),(14,25,20,31),(15,36,21,30),(16,35,22,29),(17,34,23,28),(18,33,24,27)], [(1,29,9,33,5,25),(2,34,10,26,6,30),(3,27,11,31,7,35),(4,32,12,36,8,28),(13,40,21,44,17,48),(14,45,22,37,18,41),(15,38,23,42,19,46),(16,43,24,47,20,39)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,16,19,22),(14,21,20,15),(17,24,23,18),(25,36,31,30),(26,29,32,35),(27,34,33,28),(37,42,43,48),(38,47,44,41),(39,40,45,46)])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3A | 3B | 3C | 4A | 4B | 4C | 4D | ··· | 4I | 4J | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | ··· | 12F | 12G | 12H | 12I | 12J | ··· | 12O |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | ··· | 12 |
size | 1 | 1 | 6 | 6 | 18 | 18 | 18 | 2 | 2 | 4 | 2 | 2 | 2 | 6 | ··· | 6 | 18 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 4 | ··· | 4 | 8 | 8 | 8 | 12 | ··· | 12 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | - | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | 2- 1+4 | S32 | C2×S32 | Q8.15D6 | Dic6.26D6 |
kernel | Dic6.26D6 | Dic3.D6 | D6.D6 | D6.6D6 | C3×S3×Q8 | C12.26D6 | S3×Q8 | Dic6 | C4×S3 | C3×Q8 | C32 | Q8 | C4 | C3 | C1 |
# reps | 1 | 3 | 3 | 6 | 2 | 1 | 2 | 6 | 6 | 2 | 1 | 1 | 3 | 4 | 1 |
Matrix representation of Dic6.26D6 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 12 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 5 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 8 |
0 | 0 | 0 | 0 | 0 | 8 |
12 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 2 |
0 | 0 | 0 | 0 | 4 | 11 |
0 | 0 | 11 | 11 | 0 | 0 |
0 | 0 | 9 | 2 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 12 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,1,1,0,0,0,1,0,0,0,0,12,12,0,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,0,0,0,0,0,5,5,0,0,0,0,0,0,5,0,0,0,0,0,8,8],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,0,0,11,9,0,0,0,0,11,2,0,0,2,4,0,0,0,0,2,11,0,0],[12,12,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,12,12,0,0] >;
Dic6.26D6 in GAP, Magma, Sage, TeX
{\rm Dic}_6._{26}D_6
% in TeX
G:=Group("Dic6.26D6");
// GroupNames label
G:=SmallGroup(288,964);
// by ID
G=gap.SmallGroup(288,964);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,100,185,80,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^12=c^6=1,b^2=d^2=a^6,b*a*b^-1=a^-1,c*a*c^-1=d*a*d^-1=a^5,b*c=c*b,d*b*d^-1=a^6*b,d*c*d^-1=a^6*c^-1>;
// generators/relations