metabelian, supersoluble, monomial
Aliases: D12.25D6, Dic6.25D6, C32⋊42- 1+4, (S3×Q8)⋊7S3, Q8.18S32, Q8⋊3S3⋊7S3, C3⋊4(Q8○D12), (C4×S3).16D6, (C3×Q8).46D6, (S3×Dic6)⋊11C2, D6.D6⋊8C2, (C3×C6).22C24, C6.22(S3×C23), D12⋊S3⋊11C2, D12⋊5S3⋊11C2, (S3×C6).24C23, C12.34(C22×S3), (C3×C12).34C23, D6.22(C22×S3), (S3×C12).33C22, C3⋊3(Q8.15D6), D6⋊S3.9C22, C3⋊D12.3C22, (C3×D12).30C22, C3⋊Dic3.24C23, (S3×Dic3).4C22, Dic3.11(C22×S3), (C3×Dic6).30C22, (C3×Dic3).15C23, C32⋊2Q8.10C22, (Q8×C32).21C22, C32⋊4Q8.22C22, (C3×S3×Q8)⋊7C2, C4.34(C2×S32), (Q8×C3⋊S3)⋊6C2, C2.24(C22×S32), (C3×Q8⋊3S3)⋊7C2, (C4×C3⋊S3).44C22, (C2×C3⋊S3).46C23, SmallGroup(288,963)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D12.25D6
G = < a,b,c,d | a12=b2=1, c6=d2=a6, bab=a-1, cac-1=a7, ad=da, cbc-1=a6b, bd=db, dcd-1=a6c5 >
Subgroups: 1026 in 311 conjugacy classes, 108 normal (24 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, D4, Q8, Q8, C32, Dic3, Dic3, Dic3, C12, C12, D6, D6, D6, C2×C6, C2×Q8, C4○D4, C3×S3, C3⋊S3, C3×C6, Dic6, Dic6, C4×S3, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×Q8, C3×Q8, 2- 1+4, C3×Dic3, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, S3×C6, C2×C3⋊S3, C2×Dic6, C4○D12, D4⋊2S3, S3×Q8, S3×Q8, Q8⋊3S3, Q8⋊3S3, C6×Q8, C3×C4○D4, S3×Dic3, D6⋊S3, C3⋊D12, C3⋊D12, C32⋊2Q8, C3×Dic6, S3×C12, C3×D12, C32⋊4Q8, C4×C3⋊S3, Q8×C32, Q8.15D6, Q8○D12, S3×Dic6, D12⋊5S3, D12⋊S3, D6.D6, C3×S3×Q8, C3×Q8⋊3S3, Q8×C3⋊S3, D12.25D6
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, 2- 1+4, S32, S3×C23, C2×S32, Q8.15D6, Q8○D12, C22×S32, D12.25D6
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 48)(2 47)(3 46)(4 45)(5 44)(6 43)(7 42)(8 41)(9 40)(10 39)(11 38)(12 37)(13 33)(14 32)(15 31)(16 30)(17 29)(18 28)(19 27)(20 26)(21 25)(22 36)(23 35)(24 34)
(1 19 3 21 5 23 7 13 9 15 11 17)(2 14 4 16 6 18 8 20 10 22 12 24)(25 38 35 48 33 46 31 44 29 42 27 40)(26 45 36 43 34 41 32 39 30 37 28 47)
(1 27 7 33)(2 28 8 34)(3 29 9 35)(4 30 10 36)(5 31 11 25)(6 32 12 26)(13 48 19 42)(14 37 20 43)(15 38 21 44)(16 39 22 45)(17 40 23 46)(18 41 24 47)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,33)(14,32)(15,31)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,36)(23,35)(24,34), (1,19,3,21,5,23,7,13,9,15,11,17)(2,14,4,16,6,18,8,20,10,22,12,24)(25,38,35,48,33,46,31,44,29,42,27,40)(26,45,36,43,34,41,32,39,30,37,28,47), (1,27,7,33)(2,28,8,34)(3,29,9,35)(4,30,10,36)(5,31,11,25)(6,32,12,26)(13,48,19,42)(14,37,20,43)(15,38,21,44)(16,39,22,45)(17,40,23,46)(18,41,24,47)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,33)(14,32)(15,31)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,36)(23,35)(24,34), (1,19,3,21,5,23,7,13,9,15,11,17)(2,14,4,16,6,18,8,20,10,22,12,24)(25,38,35,48,33,46,31,44,29,42,27,40)(26,45,36,43,34,41,32,39,30,37,28,47), (1,27,7,33)(2,28,8,34)(3,29,9,35)(4,30,10,36)(5,31,11,25)(6,32,12,26)(13,48,19,42)(14,37,20,43)(15,38,21,44)(16,39,22,45)(17,40,23,46)(18,41,24,47) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,48),(2,47),(3,46),(4,45),(5,44),(6,43),(7,42),(8,41),(9,40),(10,39),(11,38),(12,37),(13,33),(14,32),(15,31),(16,30),(17,29),(18,28),(19,27),(20,26),(21,25),(22,36),(23,35),(24,34)], [(1,19,3,21,5,23,7,13,9,15,11,17),(2,14,4,16,6,18,8,20,10,22,12,24),(25,38,35,48,33,46,31,44,29,42,27,40),(26,45,36,43,34,41,32,39,30,37,28,47)], [(1,27,7,33),(2,28,8,34),(3,29,9,35),(4,30,10,36),(5,31,11,25),(6,32,12,26),(13,48,19,42),(14,37,20,43),(15,38,21,44),(16,39,22,45),(17,40,23,46),(18,41,24,47)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 12A | ··· | 12F | 12G | 12H | 12I | 12J | 12K | 12L | 12M | 12N |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 6 | 6 | 6 | 6 | 18 | 2 | 2 | 4 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 2 | 2 | 4 | 6 | 6 | 12 | 12 | 12 | 4 | ··· | 4 | 6 | 6 | 8 | 8 | 8 | 12 | 12 | 12 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | - | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D6 | D6 | D6 | D6 | 2- 1+4 | S32 | C2×S32 | Q8.15D6 | Q8○D12 | D12.25D6 |
kernel | D12.25D6 | S3×Dic6 | D12⋊5S3 | D12⋊S3 | D6.D6 | C3×S3×Q8 | C3×Q8⋊3S3 | Q8×C3⋊S3 | S3×Q8 | Q8⋊3S3 | Dic6 | C4×S3 | D12 | C3×Q8 | C32 | Q8 | C4 | C3 | C3 | C1 |
# reps | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 3 | 6 | 3 | 2 | 1 | 1 | 3 | 2 | 2 | 1 |
Matrix representation of D12.25D6 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 8 |
0 | 0 | 0 | 0 | 5 | 0 |
0 | 0 | 5 | 8 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 2 |
0 | 0 | 0 | 0 | 11 | 4 |
0 | 0 | 4 | 11 | 0 | 0 |
0 | 0 | 2 | 9 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 7 |
0 | 0 | 0 | 0 | 6 | 10 |
0 | 0 | 3 | 7 | 0 | 0 |
0 | 0 | 6 | 10 | 0 | 0 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,5,5,0,0,0,0,8,0,0,0,5,5,0,0,0,0,8,0,0,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,4,2,0,0,0,0,11,9,0,0,9,11,0,0,0,0,2,4,0,0],[0,1,0,0,0,0,12,1,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,6,0,0,0,0,7,10,0,0,3,6,0,0,0,0,7,10,0,0] >;
D12.25D6 in GAP, Magma, Sage, TeX
D_{12}._{25}D_6
% in TeX
G:=Group("D12.25D6");
// GroupNames label
G:=SmallGroup(288,963);
// by ID
G=gap.SmallGroup(288,963);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,219,100,675,185,80,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^12=b^2=1,c^6=d^2=a^6,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=a^6*b,b*d=d*b,d*c*d^-1=a^6*c^5>;
// generators/relations