Extensions 1→N→G→Q→1 with N=D6⋊Dic3 and Q=C2

Direct product G=N×Q with N=D6⋊Dic3 and Q=C2
dρLabelID
C2×D6⋊Dic396C2xD6:Dic3288,608

Semidirect products G=N:Q with N=D6⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
D6⋊Dic31C2 = Dic3.D12φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:1C2288,500
D6⋊Dic32C2 = C12.27D12φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3:2C2288,508
D6⋊Dic33C2 = Dic3×D12φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3:3C2288,540
D6⋊Dic34C2 = D62D12φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3:4C2288,556
D6⋊Dic35C2 = S3×D6⋊C4φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:5C2288,568
D6⋊Dic36C2 = C62.56D4φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:6C2288,609
D6⋊Dic37C2 = Dic3×C3⋊D4φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:7C2288,620
D6⋊Dic38C2 = C626D4φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:8C2288,626
D6⋊Dic39C2 = Dic3⋊D12φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:9C2288,534
D6⋊Dic310C2 = D6.9D12φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3:10C2288,539
D6⋊Dic311C2 = C62.75C23φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3:11C2288,553
D6⋊Dic312C2 = C62.85C23φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3:12C2288,563
D6⋊Dic313C2 = C122D12φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:13C2288,564
D6⋊Dic314C2 = D64D12φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:14C2288,570
D6⋊Dic315C2 = C62.57D4φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:15C2288,610
D6⋊Dic316C2 = C62.111C23φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:16C2288,617
D6⋊Dic317C2 = C625D4φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:17C2288,625
D6⋊Dic318C2 = C62.24C23φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:18C2288,502
D6⋊Dic319C2 = C62.49C23φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3:19C2288,527
D6⋊Dic320C2 = C62.55C23φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3:20C2288,533
D6⋊Dic321C2 = D12⋊Dic3φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3:21C2288,546
D6⋊Dic322C2 = C62.74C23φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:22C2288,552
D6⋊Dic323C2 = C62.83C23φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3:23C2288,561
D6⋊Dic324C2 = C62.91C23φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:24C2288,569
D6⋊Dic325C2 = C62.100C23φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:25C2288,606
D6⋊Dic326C2 = C62.101C23φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:26C2288,607
D6⋊Dic327C2 = S3×C6.D4φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:27C2288,616
D6⋊Dic328C2 = C62.115C23φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:28C2288,621
D6⋊Dic329C2 = C62.20C23φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:29C2288,498
D6⋊Dic330C2 = C62.23C23φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:30C2288,501
D6⋊Dic331C2 = C62.33C23φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3:31C2288,511
D6⋊Dic332C2 = C62.54C23φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3:32C2288,532
D6⋊Dic333C2 = C62.77C23φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:33C2288,555
D6⋊Dic334C2 = C62.112C23φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:34C2288,618
D6⋊Dic335C2 = C624D4φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:35C2288,624
D6⋊Dic336C2 = C627D4φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:36C2288,628
D6⋊Dic337C2 = C62.125C23φ: C2/C1C2 ⊆ Out D6⋊Dic348D6:Dic3:37C2288,631
D6⋊Dic338C2 = C4×D6⋊S3φ: trivial image96D6:Dic3:38C2288,549
D6⋊Dic339C2 = C4×C3⋊D12φ: trivial image48D6:Dic3:39C2288,551

Non-split extensions G=N.Q with N=D6⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
D6⋊Dic3.1C2 = C62.29C23φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3.1C2288,507
D6⋊Dic3.2C2 = C62.47C23φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3.2C2288,525
D6⋊Dic3.3C2 = D67Dic6φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3.3C2288,505
D6⋊Dic3.4C2 = C62.28C23φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3.4C2288,506
D6⋊Dic3.5C2 = C62.32C23φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3.5C2288,510
D6⋊Dic3.6C2 = D62Dic6φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3.6C2288,541
D6⋊Dic3.7C2 = D64Dic6φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3.7C2288,547
D6⋊Dic3.8C2 = C62.11C23φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3.8C2288,489
D6⋊Dic3.9C2 = C62.31C23φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3.9C2288,509
D6⋊Dic3.10C2 = C62.48C23φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3.10C2288,526
D6⋊Dic3.11C2 = D6⋊Dic6φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3.11C2288,499
D6⋊Dic3.12C2 = D66Dic6φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3.12C2288,504
D6⋊Dic3.13C2 = D61Dic6φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3.13C2288,535
D6⋊Dic3.14C2 = D63Dic6φ: C2/C1C2 ⊆ Out D6⋊Dic396D6:Dic3.14C2288,544
D6⋊Dic3.15C2 = C62.25C23φ: trivial image96D6:Dic3.15C2288,503

׿
×
𝔽