metabelian, supersoluble, monomial
Aliases: D6⋊4D12, C62.92C23, (S3×C6)⋊3D4, D6⋊C4⋊18S3, (C2×D12)⋊6S3, (C2×C12)⋊13D6, C6.26(S3×D4), (C6×D12)⋊23C2, D6⋊5(C3⋊D4), (C2×Dic3)⋊1D6, C6.28(C2×D12), C2.28(S3×D12), C32⋊2C22≀C2, (C22×S3)⋊2D6, C3⋊3(D6⋊D4), C3⋊1(C23⋊2D6), D6⋊Dic3⋊14C2, (C6×C12)⋊17C22, (C6×Dic3)⋊1C22, C6.11D12⋊12C2, C2.20(D6⋊D6), (C2×C4)⋊1S32, (C2×C3⋊S3)⋊2D4, (C22×S32)⋊1C2, (S3×C2×C6)⋊1C22, (C3×D6⋊C4)⋊15C2, C2.19(S3×C3⋊D4), C6.41(C2×C3⋊D4), (C2×D6⋊S3)⋊6C2, (C2×C3⋊D12)⋊7C2, C22.127(C2×S32), (C3×C6).114(C2×D4), (C2×C3⋊Dic3)⋊2C22, (C2×C6).111(C22×S3), (C22×C3⋊S3).27C22, SmallGroup(288,570)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6⋊4D12
G = < a,b,c,d | a6=b2=c12=d2=1, bab=a-1, ac=ca, ad=da, cbc-1=dbd=a3b, dcd=c-1 >
Subgroups: 1370 in 277 conjugacy classes, 54 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C32, Dic3, C12, D6, D6, C2×C6, C2×C6, C22⋊C4, C2×D4, C24, C3×S3, C3⋊S3, C3×C6, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C22≀C2, C3×Dic3, C3⋊Dic3, C3×C12, S32, S3×C6, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, D6⋊C4, D6⋊C4, C6.D4, C3×C22⋊C4, C2×D12, C2×D12, C2×C3⋊D4, C6×D4, S3×C23, D6⋊S3, C3⋊D12, C3×D12, C6×Dic3, C2×C3⋊Dic3, C6×C12, C2×S32, S3×C2×C6, C22×C3⋊S3, D6⋊D4, C23⋊2D6, D6⋊Dic3, C3×D6⋊C4, C6.11D12, C2×D6⋊S3, C2×C3⋊D12, C6×D12, C22×S32, D6⋊4D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C3⋊D4, C22×S3, C22≀C2, S32, C2×D12, S3×D4, C2×C3⋊D4, C2×S32, D6⋊D4, C23⋊2D6, S3×D12, D6⋊D6, S3×C3⋊D4, D6⋊4D12
(1 31 5 35 9 27)(2 32 6 36 10 28)(3 33 7 25 11 29)(4 34 8 26 12 30)(13 39 21 47 17 43)(14 40 22 48 18 44)(15 41 23 37 19 45)(16 42 24 38 20 46)
(1 42)(2 21)(3 44)(4 23)(5 46)(6 13)(7 48)(8 15)(9 38)(10 17)(11 40)(12 19)(14 29)(16 31)(18 33)(20 35)(22 25)(24 27)(26 45)(28 47)(30 37)(32 39)(34 41)(36 43)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 16)(9 15)(10 14)(11 13)(12 24)(25 43)(26 42)(27 41)(28 40)(29 39)(30 38)(31 37)(32 48)(33 47)(34 46)(35 45)(36 44)
G:=sub<Sym(48)| (1,31,5,35,9,27)(2,32,6,36,10,28)(3,33,7,25,11,29)(4,34,8,26,12,30)(13,39,21,47,17,43)(14,40,22,48,18,44)(15,41,23,37,19,45)(16,42,24,38,20,46), (1,42)(2,21)(3,44)(4,23)(5,46)(6,13)(7,48)(8,15)(9,38)(10,17)(11,40)(12,19)(14,29)(16,31)(18,33)(20,35)(22,25)(24,27)(26,45)(28,47)(30,37)(32,39)(34,41)(36,43), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)(12,24)(25,43)(26,42)(27,41)(28,40)(29,39)(30,38)(31,37)(32,48)(33,47)(34,46)(35,45)(36,44)>;
G:=Group( (1,31,5,35,9,27)(2,32,6,36,10,28)(3,33,7,25,11,29)(4,34,8,26,12,30)(13,39,21,47,17,43)(14,40,22,48,18,44)(15,41,23,37,19,45)(16,42,24,38,20,46), (1,42)(2,21)(3,44)(4,23)(5,46)(6,13)(7,48)(8,15)(9,38)(10,17)(11,40)(12,19)(14,29)(16,31)(18,33)(20,35)(22,25)(24,27)(26,45)(28,47)(30,37)(32,39)(34,41)(36,43), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)(12,24)(25,43)(26,42)(27,41)(28,40)(29,39)(30,38)(31,37)(32,48)(33,47)(34,46)(35,45)(36,44) );
G=PermutationGroup([[(1,31,5,35,9,27),(2,32,6,36,10,28),(3,33,7,25,11,29),(4,34,8,26,12,30),(13,39,21,47,17,43),(14,40,22,48,18,44),(15,41,23,37,19,45),(16,42,24,38,20,46)], [(1,42),(2,21),(3,44),(4,23),(5,46),(6,13),(7,48),(8,15),(9,38),(10,17),(11,40),(12,19),(14,29),(16,31),(18,33),(20,35),(22,25),(24,27),(26,45),(28,47),(30,37),(32,39),(34,41),(36,43)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,16),(9,15),(10,14),(11,13),(12,24),(25,43),(26,42),(27,41),(28,40),(29,39),(30,38),(31,37),(32,48),(33,47),(34,46),(35,45),(36,44)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 3A | 3B | 3C | 4A | 4B | 4C | 6A | ··· | 6F | 6G | 6H | 6I | 6J | ··· | 6O | 12A | ··· | 12H | 12I | 12J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 12 | ··· | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 6 | 6 | 6 | 6 | 12 | 18 | 18 | 2 | 2 | 4 | 4 | 12 | 36 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | ··· | 12 | 4 | ··· | 4 | 12 | 12 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D4 | D4 | D6 | D6 | D6 | D12 | C3⋊D4 | S32 | S3×D4 | C2×S32 | S3×D12 | D6⋊D6 | S3×C3⋊D4 |
kernel | D6⋊4D12 | D6⋊Dic3 | C3×D6⋊C4 | C6.11D12 | C2×D6⋊S3 | C2×C3⋊D12 | C6×D12 | C22×S32 | D6⋊C4 | C2×D12 | S3×C6 | C2×C3⋊S3 | C2×Dic3 | C2×C12 | C22×S3 | D6 | D6 | C2×C4 | C6 | C22 | C2 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 2 | 1 | 2 | 3 | 4 | 4 | 1 | 4 | 1 | 2 | 2 | 2 |
Matrix representation of D6⋊4D12 ►in GL8(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 11 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 11 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1],[8,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,11,12],[0,8,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,11,12] >;
D6⋊4D12 in GAP, Magma, Sage, TeX
D_6\rtimes_4D_{12}
% in TeX
G:=Group("D6:4D12");
// GroupNames label
G:=SmallGroup(288,570);
// by ID
G=gap.SmallGroup(288,570);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,422,135,100,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^2=c^12=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations