Copied to
clipboard

G = D6:6Dic6order 288 = 25·32

2nd semidirect product of D6 and Dic6 acting via Dic6/C12=C2

metabelian, supersoluble, monomial

Aliases: D6:6Dic6, C62.26C23, (S3xC6):6Q8, C6.21(S3xQ8), (C6xDic6):5C2, (C2xDic6):2S3, (C3xC12).73D4, C6.9(C2xDic6), C3:4(D6:3Q8), C6.7(C4oD12), (C2xC12).276D6, C2.11(S3xDic6), C32:4(C22:Q8), C12.51(C3:D4), D6:Dic3.12C2, (C6xC12).90C22, C6.7(Q8:3S3), (C2xDic3).10D6, (C22xS3).62D6, C12:Dic3:16C2, C4.15(D6:S3), C3:4(C12.48D4), C62.C22:21C2, C2.10(D6.6D6), (C6xDic3).75C22, (C2xC4).72S32, (S3xC2xC4).3S3, (S3xC2xC12).6C2, C22.83(C2xS32), (C3xC6).81(C2xD4), C6.75(C2xC3:D4), (C3xC6).17(C2xQ8), (S3xC2xC6).72C22, (C3xC6).14(C4oD4), C2.10(C2xD6:S3), (C2xC6).45(C22xS3), (C2xC3:Dic3).24C22, SmallGroup(288,504)

Series: Derived Chief Lower central Upper central

C1C62 — D6:6Dic6
C1C3C32C3xC6C62S3xC2xC6D6:Dic3 — D6:6Dic6
C32C62 — D6:6Dic6
C1C22C2xC4

Generators and relations for D6:6Dic6
 G = < a,b,c,d | a6=b2=c12=1, d2=c6, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a3b, dcd-1=c-1 >

Subgroups: 522 in 161 conjugacy classes, 56 normal (34 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, Q8, C23, C32, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xQ8, C3xS3, C3xC6, Dic6, C4xS3, C2xDic3, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xS3, C22xC6, C22:Q8, C3xDic3, C3:Dic3, C3xC12, S3xC6, S3xC6, C62, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C2xDic6, S3xC2xC4, C22xC12, C6xQ8, C3xDic6, S3xC12, C6xDic3, C6xDic3, C2xC3:Dic3, C6xC12, S3xC2xC6, C12.48D4, D6:3Q8, D6:Dic3, C62.C22, C12:Dic3, C6xDic6, S3xC2xC12, D6:6Dic6
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2xD4, C2xQ8, C4oD4, Dic6, C3:D4, C22xS3, C22:Q8, S32, C2xDic6, C4oD12, S3xQ8, Q8:3S3, C2xC3:D4, D6:S3, C2xS32, C12.48D4, D6:3Q8, S3xDic6, D6.6D6, C2xD6:S3, D6:6Dic6

Smallest permutation representation of D6:6Dic6
On 96 points
Generators in S96
(1 87 9 95 5 91)(2 88 10 96 6 92)(3 89 11 85 7 93)(4 90 12 86 8 94)(13 37 17 41 21 45)(14 38 18 42 22 46)(15 39 19 43 23 47)(16 40 20 44 24 48)(25 71 33 67 29 63)(26 72 34 68 30 64)(27 61 35 69 31 65)(28 62 36 70 32 66)(49 78 53 82 57 74)(50 79 54 83 58 75)(51 80 55 84 59 76)(52 81 56 73 60 77)
(1 80)(2 81)(3 82)(4 83)(5 84)(6 73)(7 74)(8 75)(9 76)(10 77)(11 78)(12 79)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 47)(26 48)(27 37)(28 38)(29 39)(30 40)(31 41)(32 42)(33 43)(34 44)(35 45)(36 46)(49 85)(50 86)(51 87)(52 88)(53 89)(54 90)(55 91)(56 92)(57 93)(58 94)(59 95)(60 96)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 38 7 44)(2 37 8 43)(3 48 9 42)(4 47 10 41)(5 46 11 40)(6 45 12 39)(13 86 19 92)(14 85 20 91)(15 96 21 90)(16 95 22 89)(17 94 23 88)(18 93 24 87)(25 56 31 50)(26 55 32 49)(27 54 33 60)(28 53 34 59)(29 52 35 58)(30 51 36 57)(61 83 67 77)(62 82 68 76)(63 81 69 75)(64 80 70 74)(65 79 71 73)(66 78 72 84)

G:=sub<Sym(96)| (1,87,9,95,5,91)(2,88,10,96,6,92)(3,89,11,85,7,93)(4,90,12,86,8,94)(13,37,17,41,21,45)(14,38,18,42,22,46)(15,39,19,43,23,47)(16,40,20,44,24,48)(25,71,33,67,29,63)(26,72,34,68,30,64)(27,61,35,69,31,65)(28,62,36,70,32,66)(49,78,53,82,57,74)(50,79,54,83,58,75)(51,80,55,84,59,76)(52,81,56,73,60,77), (1,80)(2,81)(3,82)(4,83)(5,84)(6,73)(7,74)(8,75)(9,76)(10,77)(11,78)(12,79)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,47)(26,48)(27,37)(28,38)(29,39)(30,40)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(49,85)(50,86)(51,87)(52,88)(53,89)(54,90)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,38,7,44)(2,37,8,43)(3,48,9,42)(4,47,10,41)(5,46,11,40)(6,45,12,39)(13,86,19,92)(14,85,20,91)(15,96,21,90)(16,95,22,89)(17,94,23,88)(18,93,24,87)(25,56,31,50)(26,55,32,49)(27,54,33,60)(28,53,34,59)(29,52,35,58)(30,51,36,57)(61,83,67,77)(62,82,68,76)(63,81,69,75)(64,80,70,74)(65,79,71,73)(66,78,72,84)>;

G:=Group( (1,87,9,95,5,91)(2,88,10,96,6,92)(3,89,11,85,7,93)(4,90,12,86,8,94)(13,37,17,41,21,45)(14,38,18,42,22,46)(15,39,19,43,23,47)(16,40,20,44,24,48)(25,71,33,67,29,63)(26,72,34,68,30,64)(27,61,35,69,31,65)(28,62,36,70,32,66)(49,78,53,82,57,74)(50,79,54,83,58,75)(51,80,55,84,59,76)(52,81,56,73,60,77), (1,80)(2,81)(3,82)(4,83)(5,84)(6,73)(7,74)(8,75)(9,76)(10,77)(11,78)(12,79)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,47)(26,48)(27,37)(28,38)(29,39)(30,40)(31,41)(32,42)(33,43)(34,44)(35,45)(36,46)(49,85)(50,86)(51,87)(52,88)(53,89)(54,90)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,38,7,44)(2,37,8,43)(3,48,9,42)(4,47,10,41)(5,46,11,40)(6,45,12,39)(13,86,19,92)(14,85,20,91)(15,96,21,90)(16,95,22,89)(17,94,23,88)(18,93,24,87)(25,56,31,50)(26,55,32,49)(27,54,33,60)(28,53,34,59)(29,52,35,58)(30,51,36,57)(61,83,67,77)(62,82,68,76)(63,81,69,75)(64,80,70,74)(65,79,71,73)(66,78,72,84) );

G=PermutationGroup([[(1,87,9,95,5,91),(2,88,10,96,6,92),(3,89,11,85,7,93),(4,90,12,86,8,94),(13,37,17,41,21,45),(14,38,18,42,22,46),(15,39,19,43,23,47),(16,40,20,44,24,48),(25,71,33,67,29,63),(26,72,34,68,30,64),(27,61,35,69,31,65),(28,62,36,70,32,66),(49,78,53,82,57,74),(50,79,54,83,58,75),(51,80,55,84,59,76),(52,81,56,73,60,77)], [(1,80),(2,81),(3,82),(4,83),(5,84),(6,73),(7,74),(8,75),(9,76),(10,77),(11,78),(12,79),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,47),(26,48),(27,37),(28,38),(29,39),(30,40),(31,41),(32,42),(33,43),(34,44),(35,45),(36,46),(49,85),(50,86),(51,87),(52,88),(53,89),(54,90),(55,91),(56,92),(57,93),(58,94),(59,95),(60,96)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,38,7,44),(2,37,8,43),(3,48,9,42),(4,47,10,41),(5,46,11,40),(6,45,12,39),(13,86,19,92),(14,85,20,91),(15,96,21,90),(16,95,22,89),(17,94,23,88),(18,93,24,87),(25,56,31,50),(26,55,32,49),(27,54,33,60),(28,53,34,59),(29,52,35,58),(30,51,36,57),(61,83,67,77),(62,82,68,76),(63,81,69,75),(64,80,70,74),(65,79,71,73),(66,78,72,84)]])

48 conjugacy classes

class 1 2A2B2C2D2E3A3B3C4A4B4C4D4E4F4G4H6A···6F6G6H6I6J6K6L6M12A12B12C12D12E···12J12K12L12M12N12O12P12Q12R
order122222333444444446···666666661212121212···121212121212121212
size1111662242266121236362···2444666622224···4666612121212

48 irreducible representations

dim111111222222222224444444
type+++++++++-+++-+-+-+-+
imageC1C2C2C2C2C2S3S3D4Q8D6D6D6C4oD4C3:D4Dic6C4oD12S32S3xQ8Q8:3S3D6:S3C2xS32S3xDic6D6.6D6
kernelD6:6Dic6D6:Dic3C62.C22C12:Dic3C6xDic6S3xC2xC12C2xDic6S3xC2xC4C3xC12S3xC6C2xDic3C2xC12C22xS3C3xC6C12D6C6C2xC4C6C6C4C22C2C2
# reps122111112232128441112122

Matrix representation of D6:6Dic6 in GL6(F13)

1200000
0120000
001000
000100
0000012
000011
,
1200000
010000
0012000
0001200
000063
0000107
,
500000
080000
000100
0012100
0000120
0000012
,
010000
1200000
0001200
0012000
0000119
000042

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,1],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,6,10,0,0,0,0,3,7],[5,0,0,0,0,0,0,8,0,0,0,0,0,0,0,12,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,11,4,0,0,0,0,9,2] >;

D6:6Dic6 in GAP, Magma, Sage, TeX

D_6\rtimes_6{\rm Dic}_6
% in TeX

G:=Group("D6:6Dic6");
// GroupNames label

G:=SmallGroup(288,504);
// by ID

G=gap.SmallGroup(288,504);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,120,219,100,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^12=1,d^2=c^6,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^3*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<