Extensions 1→N→G→Q→1 with N=C4xS3 and Q=C12

Direct product G=NxQ with N=C4xS3 and Q=C12
dρLabelID
S3xC4xC1296S3xC4xC12288,642

Semidirect products G=N:Q with N=C4xS3 and Q=C12
extensionφ:Q→Out NdρLabelID
(C4xS3):1C12 = C3xS3xC4:C4φ: C12/C6C2 ⊆ Out C4xS396(C4xS3):1C12288,662
(C4xS3):2C12 = C3xC4:C4:7S3φ: C12/C6C2 ⊆ Out C4xS396(C4xS3):2C12288,663
(C4xS3):3C12 = C3xC42:2S3φ: C12/C6C2 ⊆ Out C4xS396(C4xS3):3C12288,643

Non-split extensions G=N.Q with N=C4xS3 and Q=C12
extensionφ:Q→Out NdρLabelID
(C4xS3).1C12 = C3xS3xM4(2)φ: C12/C6C2 ⊆ Out C4xS3484(C4xS3).1C12288,677
(C4xS3).2C12 = C3xD6.C8φ: C12/C6C2 ⊆ Out C4xS3962(C4xS3).2C12288,232
(C4xS3).3C12 = C6xC8:S3φ: C12/C6C2 ⊆ Out C4xS396(C4xS3).3C12288,671
(C4xS3).4C12 = S3xC48φ: trivial image962(C4xS3).4C12288,231
(C4xS3).5C12 = S3xC2xC24φ: trivial image96(C4xS3).5C12288,670

׿
x
:
Z
F
o
wr
Q
<