Copied to
clipboard

G = C3×C4⋊C47S3order 288 = 25·32

Direct product of C3 and C4⋊C47S3

direct product, metabelian, supersoluble, monomial

Aliases: C3×C4⋊C47S3, C62.183C23, (S3×C12)⋊5C4, (C4×S3)⋊2C12, D6⋊C4.4C6, C4.14(S3×C12), C4⋊Dic312C6, D6.4(C2×C12), C12.105(C4×S3), C12.11(C2×C12), (C4×Dic3)⋊13C6, (C2×C12).270D6, (Dic3×C12)⋊29C2, C6.10(C22×C12), Dic3.9(C2×C12), (C6×C12).248C22, C6.57(Q83S3), C6.119(D42S3), C3215(C42⋊C2), (C6×Dic3).126C22, (C3×C4⋊C4)⋊3C6, C4⋊C47(C3×S3), (S3×C2×C4).1C6, (C3×C4⋊C4)⋊16S3, C6.109(S3×C2×C4), C2.12(S3×C2×C12), (C32×C4⋊C4)⋊4C2, (S3×C2×C12).10C2, (C2×C4).31(S3×C6), C6.26(C3×C4○D4), C22.17(S3×C2×C6), (S3×C6).22(C2×C4), (C3×C12).66(C2×C4), (C2×C12).57(C2×C6), (C3×D6⋊C4).12C2, (C3×C4⋊Dic3)⋊21C2, C33(C3×C42⋊C2), C2.4(C3×D42S3), (S3×C2×C6).92C22, C2.1(C3×Q83S3), (C2×C6).38(C22×C6), (C3×C6).81(C22×C4), (C3×C6).133(C4○D4), (C22×S3).19(C2×C6), (C2×C6).316(C22×S3), (C3×Dic3).30(C2×C4), (C2×Dic3).47(C2×C6), SmallGroup(288,663)

Series: Derived Chief Lower central Upper central

C1C6 — C3×C4⋊C47S3
C1C3C6C2×C6C62S3×C2×C6S3×C2×C12 — C3×C4⋊C47S3
C3C6 — C3×C4⋊C47S3
C1C2×C6C3×C4⋊C4

Generators and relations for C3×C4⋊C47S3
 G = < a,b,c,d,e | a3=b4=c4=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ece=b2c, ede=d-1 >

Subgroups: 338 in 165 conjugacy classes, 82 normal (38 characteristic)
C1, C2 [×3], C2 [×2], C3 [×2], C3, C4 [×2], C4 [×6], C22, C22 [×4], S3 [×2], C6 [×6], C6 [×5], C2×C4, C2×C4 [×2], C2×C4 [×7], C23, C32, Dic3 [×2], Dic3 [×2], C12 [×4], C12 [×12], D6 [×2], D6 [×2], C2×C6 [×2], C2×C6 [×5], C42 [×2], C22⋊C4 [×2], C4⋊C4, C4⋊C4, C22×C4, C3×S3 [×2], C3×C6 [×3], C4×S3 [×4], C2×Dic3, C2×Dic3 [×2], C2×C12 [×2], C2×C12 [×4], C2×C12 [×10], C22×S3, C22×C6, C42⋊C2, C3×Dic3 [×2], C3×Dic3 [×2], C3×C12 [×2], C3×C12 [×2], S3×C6 [×2], S3×C6 [×2], C62, C4×Dic3 [×2], C4⋊Dic3, D6⋊C4 [×2], C4×C12 [×2], C3×C22⋊C4 [×2], C3×C4⋊C4 [×2], C3×C4⋊C4 [×2], S3×C2×C4, C22×C12, S3×C12 [×4], C6×Dic3, C6×Dic3 [×2], C6×C12, C6×C12 [×2], S3×C2×C6, C4⋊C47S3, C3×C42⋊C2, Dic3×C12 [×2], C3×C4⋊Dic3, C3×D6⋊C4 [×2], C32×C4⋊C4, S3×C2×C12, C3×C4⋊C47S3
Quotients: C1, C2 [×7], C3, C4 [×4], C22 [×7], S3, C6 [×7], C2×C4 [×6], C23, C12 [×4], D6 [×3], C2×C6 [×7], C22×C4, C4○D4 [×2], C3×S3, C4×S3 [×2], C2×C12 [×6], C22×S3, C22×C6, C42⋊C2, S3×C6 [×3], S3×C2×C4, D42S3, Q83S3, C22×C12, C3×C4○D4 [×2], S3×C12 [×2], S3×C2×C6, C4⋊C47S3, C3×C42⋊C2, S3×C2×C12, C3×D42S3, C3×Q83S3, C3×C4⋊C47S3

Smallest permutation representation of C3×C4⋊C47S3
On 96 points
Generators in S96
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 60 76)(6 57 73)(7 58 74)(8 59 75)(9 25 42)(10 26 43)(11 27 44)(12 28 41)(21 37 46)(22 38 47)(23 39 48)(24 40 45)(29 34 83)(30 35 84)(31 36 81)(32 33 82)(49 54 89)(50 55 90)(51 56 91)(52 53 92)(61 66 79)(62 67 80)(63 68 77)(64 65 78)(69 85 94)(70 86 95)(71 87 96)(72 88 93)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)
(1 47 43 8)(2 46 44 7)(3 45 41 6)(4 48 42 5)(9 60 15 23)(10 59 16 22)(11 58 13 21)(12 57 14 24)(17 38 26 75)(18 37 27 74)(19 40 28 73)(20 39 25 76)(29 61 71 52)(30 64 72 51)(31 63 69 50)(32 62 70 49)(33 67 86 54)(34 66 87 53)(35 65 88 56)(36 68 85 55)(77 94 90 81)(78 93 91 84)(79 96 92 83)(80 95 89 82)
(1 17 16)(2 18 13)(3 19 14)(4 20 15)(5 76 60)(6 73 57)(7 74 58)(8 75 59)(9 42 25)(10 43 26)(11 44 27)(12 41 28)(21 46 37)(22 47 38)(23 48 39)(24 45 40)(29 34 83)(30 35 84)(31 36 81)(32 33 82)(49 54 89)(50 55 90)(51 56 91)(52 53 92)(61 66 79)(62 67 80)(63 68 77)(64 65 78)(69 85 94)(70 86 95)(71 87 96)(72 88 93)
(1 78)(2 79)(3 80)(4 77)(5 83)(6 84)(7 81)(8 82)(9 50)(10 51)(11 52)(12 49)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 55)(26 56)(27 53)(28 54)(29 60)(30 57)(31 58)(32 59)(33 75)(34 76)(35 73)(36 74)(37 85)(38 86)(39 87)(40 88)(41 89)(42 90)(43 91)(44 92)(45 93)(46 94)(47 95)(48 96)

G:=sub<Sym(96)| (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,60,76)(6,57,73)(7,58,74)(8,59,75)(9,25,42)(10,26,43)(11,27,44)(12,28,41)(21,37,46)(22,38,47)(23,39,48)(24,40,45)(29,34,83)(30,35,84)(31,36,81)(32,33,82)(49,54,89)(50,55,90)(51,56,91)(52,53,92)(61,66,79)(62,67,80)(63,68,77)(64,65,78)(69,85,94)(70,86,95)(71,87,96)(72,88,93), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (1,47,43,8)(2,46,44,7)(3,45,41,6)(4,48,42,5)(9,60,15,23)(10,59,16,22)(11,58,13,21)(12,57,14,24)(17,38,26,75)(18,37,27,74)(19,40,28,73)(20,39,25,76)(29,61,71,52)(30,64,72,51)(31,63,69,50)(32,62,70,49)(33,67,86,54)(34,66,87,53)(35,65,88,56)(36,68,85,55)(77,94,90,81)(78,93,91,84)(79,96,92,83)(80,95,89,82), (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,76,60)(6,73,57)(7,74,58)(8,75,59)(9,42,25)(10,43,26)(11,44,27)(12,41,28)(21,46,37)(22,47,38)(23,48,39)(24,45,40)(29,34,83)(30,35,84)(31,36,81)(32,33,82)(49,54,89)(50,55,90)(51,56,91)(52,53,92)(61,66,79)(62,67,80)(63,68,77)(64,65,78)(69,85,94)(70,86,95)(71,87,96)(72,88,93), (1,78)(2,79)(3,80)(4,77)(5,83)(6,84)(7,81)(8,82)(9,50)(10,51)(11,52)(12,49)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,55)(26,56)(27,53)(28,54)(29,60)(30,57)(31,58)(32,59)(33,75)(34,76)(35,73)(36,74)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)>;

G:=Group( (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,60,76)(6,57,73)(7,58,74)(8,59,75)(9,25,42)(10,26,43)(11,27,44)(12,28,41)(21,37,46)(22,38,47)(23,39,48)(24,40,45)(29,34,83)(30,35,84)(31,36,81)(32,33,82)(49,54,89)(50,55,90)(51,56,91)(52,53,92)(61,66,79)(62,67,80)(63,68,77)(64,65,78)(69,85,94)(70,86,95)(71,87,96)(72,88,93), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (1,47,43,8)(2,46,44,7)(3,45,41,6)(4,48,42,5)(9,60,15,23)(10,59,16,22)(11,58,13,21)(12,57,14,24)(17,38,26,75)(18,37,27,74)(19,40,28,73)(20,39,25,76)(29,61,71,52)(30,64,72,51)(31,63,69,50)(32,62,70,49)(33,67,86,54)(34,66,87,53)(35,65,88,56)(36,68,85,55)(77,94,90,81)(78,93,91,84)(79,96,92,83)(80,95,89,82), (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,76,60)(6,73,57)(7,74,58)(8,75,59)(9,42,25)(10,43,26)(11,44,27)(12,41,28)(21,46,37)(22,47,38)(23,48,39)(24,45,40)(29,34,83)(30,35,84)(31,36,81)(32,33,82)(49,54,89)(50,55,90)(51,56,91)(52,53,92)(61,66,79)(62,67,80)(63,68,77)(64,65,78)(69,85,94)(70,86,95)(71,87,96)(72,88,93), (1,78)(2,79)(3,80)(4,77)(5,83)(6,84)(7,81)(8,82)(9,50)(10,51)(11,52)(12,49)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,55)(26,56)(27,53)(28,54)(29,60)(30,57)(31,58)(32,59)(33,75)(34,76)(35,73)(36,74)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96) );

G=PermutationGroup([(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,60,76),(6,57,73),(7,58,74),(8,59,75),(9,25,42),(10,26,43),(11,27,44),(12,28,41),(21,37,46),(22,38,47),(23,39,48),(24,40,45),(29,34,83),(30,35,84),(31,36,81),(32,33,82),(49,54,89),(50,55,90),(51,56,91),(52,53,92),(61,66,79),(62,67,80),(63,68,77),(64,65,78),(69,85,94),(70,86,95),(71,87,96),(72,88,93)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96)], [(1,47,43,8),(2,46,44,7),(3,45,41,6),(4,48,42,5),(9,60,15,23),(10,59,16,22),(11,58,13,21),(12,57,14,24),(17,38,26,75),(18,37,27,74),(19,40,28,73),(20,39,25,76),(29,61,71,52),(30,64,72,51),(31,63,69,50),(32,62,70,49),(33,67,86,54),(34,66,87,53),(35,65,88,56),(36,68,85,55),(77,94,90,81),(78,93,91,84),(79,96,92,83),(80,95,89,82)], [(1,17,16),(2,18,13),(3,19,14),(4,20,15),(5,76,60),(6,73,57),(7,74,58),(8,75,59),(9,42,25),(10,43,26),(11,44,27),(12,41,28),(21,46,37),(22,47,38),(23,48,39),(24,45,40),(29,34,83),(30,35,84),(31,36,81),(32,33,82),(49,54,89),(50,55,90),(51,56,91),(52,53,92),(61,66,79),(62,67,80),(63,68,77),(64,65,78),(69,85,94),(70,86,95),(71,87,96),(72,88,93)], [(1,78),(2,79),(3,80),(4,77),(5,83),(6,84),(7,81),(8,82),(9,50),(10,51),(11,52),(12,49),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,55),(26,56),(27,53),(28,54),(29,60),(30,57),(31,58),(32,59),(33,75),(34,76),(35,73),(36,74),(37,85),(38,86),(39,87),(40,88),(41,89),(42,90),(43,91),(44,92),(45,93),(46,94),(47,95),(48,96)])

90 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D3E4A···4F4G4H4I4J4K4L4M4N6A···6F6G···6O6P6Q6R6S12A···12L12M···12T12U···12AL12AM···12AT
order122222333334···4444444446···66···6666612···1212···1212···1212···12
size111166112222···2333366661···12···266662···23···34···46···6

90 irreducible representations

dim11111111111111222222224444
type++++++++-+
imageC1C2C2C2C2C2C3C4C6C6C6C6C6C12S3D6C4○D4C3×S3C4×S3S3×C6C3×C4○D4S3×C12D42S3Q83S3C3×D42S3C3×Q83S3
kernelC3×C4⋊C47S3Dic3×C12C3×C4⋊Dic3C3×D6⋊C4C32×C4⋊C4S3×C2×C12C4⋊C47S3S3×C12C4×Dic3C4⋊Dic3D6⋊C4C3×C4⋊C4S3×C2×C4C4×S3C3×C4⋊C4C2×C12C3×C6C4⋊C4C12C2×C4C6C4C6C6C2C2
# reps121211284242216134246881122

Matrix representation of C3×C4⋊C47S3 in GL4(𝔽13) generated by

1000
0100
0090
0009
,
12400
6100
0010
0001
,
11200
21200
0050
0005
,
1000
0100
0030
0029
,
8700
4500
0052
0018
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,9,0,0,0,0,9],[12,6,0,0,4,1,0,0,0,0,1,0,0,0,0,1],[1,2,0,0,12,12,0,0,0,0,5,0,0,0,0,5],[1,0,0,0,0,1,0,0,0,0,3,2,0,0,0,9],[8,4,0,0,7,5,0,0,0,0,5,1,0,0,2,8] >;

C3×C4⋊C47S3 in GAP, Magma, Sage, TeX

C_3\times C_4\rtimes C_4\rtimes_7S_3
% in TeX

G:=Group("C3xC4:C4:7S3");
// GroupNames label

G:=SmallGroup(288,663);
// by ID

G=gap.SmallGroup(288,663);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,344,1094,555,142,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^4=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽