Extensions 1→N→G→Q→1 with N=C2 and Q=C2×S3×A4

Direct product G=N×Q with N=C2 and Q=C2×S3×A4
dρLabelID
C22×S3×A436C2^2xS3xA4288,1037


Non-split extensions G=N.Q with N=C2 and Q=C2×S3×A4
extensionφ:Q→Aut NdρLabelID
C2.1(C2×S3×A4) = C4×S3×A4central extension (φ=1)366C2.1(C2xS3xA4)288,919
C2.2(C2×S3×A4) = C2×Dic3×A4central extension (φ=1)72C2.2(C2xS3xA4)288,927
C2.3(C2×S3×A4) = A4×Dic6central stem extension (φ=1)726-C2.3(C2xS3xA4)288,918
C2.4(C2×S3×A4) = A4×D12central stem extension (φ=1)366+C2.4(C2xS3xA4)288,920
C2.5(C2×S3×A4) = C2×Dic3.A4central stem extension (φ=1)96C2.5(C2xS3xA4)288,921
C2.6(C2×S3×A4) = C2×S3×SL2(𝔽3)central stem extension (φ=1)48C2.6(C2xS3xA4)288,922
C2.7(C2×S3×A4) = SL2(𝔽3).11D6central stem extension (φ=1)484C2.7(C2xS3xA4)288,923
C2.8(C2×S3×A4) = Dic6.A4central stem extension (φ=1)724+C2.8(C2xS3xA4)288,924
C2.9(C2×S3×A4) = S3×C4.A4central stem extension (φ=1)484C2.9(C2xS3xA4)288,925
C2.10(C2×S3×A4) = D12.A4central stem extension (φ=1)484-C2.10(C2xS3xA4)288,926
C2.11(C2×S3×A4) = A4×C3⋊D4central stem extension (φ=1)366C2.11(C2xS3xA4)288,928

׿
×
𝔽