Copied to
clipboard

G = A4xD12order 288 = 25·32

Direct product of A4 and D12

direct product, metabelian, soluble, monomial

Aliases: A4xD12, C4:(S3xA4), C3:1(D4xA4), (C4xA4):3S3, C12:1(C2xA4), D6:1(C2xA4), (C3xA4):6D4, (C12xA4):3C2, (C22xD12):C3, (S3xC23):1C6, (C22xC12):1C6, (C2xA4).15D6, C22:2(C3xD12), C6.3(C22xA4), C23.18(S3xC6), (C6xA4).20C22, (C2xS3xA4):3C2, C2.4(C2xS3xA4), (C2xC6):1(C3xD4), (C22xC4):3(C3xS3), (C22xC6).3(C2xC6), SmallGroup(288,920)

Series: Derived Chief Lower central Upper central

C1C22xC6 — A4xD12
C1C3C2xC6C22xC6C6xA4C2xS3xA4 — A4xD12
C2xC6C22xC6 — A4xD12
C1C2C4

Generators and relations for A4xD12
 G = < a,b,c,d,e | a2=b2=c3=d12=e2=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 778 in 138 conjugacy classes, 27 normal (21 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, D4, C23, C23, C32, C12, C12, A4, A4, D6, D6, C2xC6, C2xC6, C22xC4, C2xD4, C24, C3xS3, C3xC6, D12, D12, C2xC12, C3xD4, C2xA4, C2xA4, C22xS3, C22xC6, C22xD4, C3xC12, C3xA4, S3xC6, C4xA4, C4xA4, C2xD12, C22xC12, C22xA4, S3xC23, C3xD12, S3xA4, C6xA4, D4xA4, C22xD12, C12xA4, C2xS3xA4, A4xD12
Quotients: C1, C2, C3, C22, S3, C6, D4, A4, D6, C2xC6, C3xS3, D12, C3xD4, C2xA4, S3xC6, C22xA4, C3xD12, S3xA4, D4xA4, C2xS3xA4, A4xD12

Smallest permutation representation of A4xD12
On 36 points
Generators in S36
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)
(1 17 34)(2 18 35)(3 19 36)(4 20 25)(5 21 26)(6 22 27)(7 23 28)(8 24 29)(9 13 30)(10 14 31)(11 15 32)(12 16 33)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 23)(14 22)(15 21)(16 20)(17 19)(25 33)(26 32)(27 31)(28 30)(34 36)

G:=sub<Sym(36)| (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,17,34)(2,18,35)(3,19,36)(4,20,25)(5,21,26)(6,22,27)(7,23,28)(8,24,29)(9,13,30)(10,14,31)(11,15,32)(12,16,33), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,3)(4,12)(5,11)(6,10)(7,9)(13,23)(14,22)(15,21)(16,20)(17,19)(25,33)(26,32)(27,31)(28,30)(34,36)>;

G:=Group( (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,17,34)(2,18,35)(3,19,36)(4,20,25)(5,21,26)(6,22,27)(7,23,28)(8,24,29)(9,13,30)(10,14,31)(11,15,32)(12,16,33), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,3)(4,12)(5,11)(6,10)(7,9)(13,23)(14,22)(15,21)(16,20)(17,19)(25,33)(26,32)(27,31)(28,30)(34,36) );

G=PermutationGroup([[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36)], [(1,17,34),(2,18,35),(3,19,36),(4,20,25),(5,21,26),(6,22,27),(7,23,28),(8,24,29),(9,13,30),(10,14,31),(11,15,32),(12,16,33)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,23),(14,22),(15,21),(16,20),(17,19),(25,33),(26,32),(27,31),(28,30),(34,36)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E4A4B6A6B6C6D6E6F6G6H6I6J6K12A12B12C12D12E···12J
order122222223333344666666666661212121212···12
size1133661818244882624466882424242422668···8

36 irreducible representations

dim111111222222223336666
type++++++++++++++
imageC1C2C2C3C6C6S3D4D6C3xS3D12C3xD4S3xC6C3xD12A4C2xA4C2xA4S3xA4D4xA4C2xS3xA4A4xD12
kernelA4xD12C12xA4C2xS3xA4C22xD12C22xC12S3xC23C4xA4C3xA4C2xA4C22xC4A4C2xC6C23C22D12C12D6C4C3C2C1
# reps112224111222241121112

Matrix representation of A4xD12 in GL5(F13)

10000
01000
000121
000120
001120
,
10000
01000
001200
001201
001210
,
30000
03000
00010
00001
00100
,
26000
72000
00100
00010
00001
,
117000
72000
00100
00010
00001

G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,12,12,12,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,12,12,12,0,0,0,0,1,0,0,0,1,0],[3,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[2,7,0,0,0,6,2,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[11,7,0,0,0,7,2,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;

A4xD12 in GAP, Magma, Sage, TeX

A_4\times D_{12}
% in TeX

G:=Group("A4xD12");
// GroupNames label

G:=SmallGroup(288,920);
// by ID

G=gap.SmallGroup(288,920);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,2,-3,197,92,648,271,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^12=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<