Copied to
clipboard

G = C73F7order 294 = 2·3·72

1st semidirect product of C7 and F7 acting via F7/D7=C3

metabelian, supersoluble, monomial, A-group

Aliases: C73F7, C724C6, (C7×D7)⋊3C3, D71(C7⋊C3), C723C32C2, C71(C2×C7⋊C3), SmallGroup(294,11)

Series: Derived Chief Lower central Upper central

C1C72 — C73F7
C1C7C72C723C3 — C73F7
C72 — C73F7
C1

Generators and relations for C73F7
 G = < a,b,c | a7=b7=c6=1, ab=ba, cac-1=a4, cbc-1=b5 >

7C2
49C3
6C7
49C6
7C14
7C7⋊C3
7C7⋊C3
7F7
7C2×C7⋊C3

Character table of C73F7

 class 123A3B6A6B7A7B7C7D7E7F7G7H7I14A14B
 size 17494949493366666662121
ρ111111111111111111    trivial
ρ21-111-1-1111111111-1-1    linear of order 2
ρ311ζ32ζ3ζ32ζ311111111111    linear of order 3
ρ411ζ3ζ32ζ3ζ3211111111111    linear of order 3
ρ51-1ζ32ζ3ζ6ζ65111111111-1-1    linear of order 6
ρ61-1ζ3ζ32ζ65ζ6111111111-1-1    linear of order 6
ρ7330000-1--7/2-1+-7/2-1--7/2-1--7/23-1--7/2-1+-7/2-1+-7/2-1+-7/2-1+-7/2-1--7/2    complex lifted from C7⋊C3
ρ8330000-1+-7/2-1--7/2-1+-7/2-1+-7/23-1+-7/2-1--7/2-1--7/2-1--7/2-1--7/2-1+-7/2    complex lifted from C7⋊C3
ρ93-30000-1--7/2-1+-7/2-1--7/2-1--7/23-1--7/2-1+-7/2-1+-7/2-1+-7/21--7/21+-7/2    complex lifted from C2×C7⋊C3
ρ103-30000-1+-7/2-1--7/2-1+-7/2-1+-7/23-1+-7/2-1--7/2-1--7/2-1--7/21+-7/21--7/2    complex lifted from C2×C7⋊C3
ρ1160000066-1-1-1-1-1-1-100    orthogonal lifted from F7
ρ12600000-1+-7-1--77675+2ζ72+1ζ76+2ζ73+2ζ7+1-175+2ζ7473+17572+2ζ7+176+2ζ747+1ζ74+2ζ73+2ζ72+100    complex faithful
ρ13600000-1+-7-1--775+2ζ7473+17675+2ζ72+1-1ζ76+2ζ73+2ζ7+1ζ74+2ζ73+2ζ72+17572+2ζ7+176+2ζ747+100    complex faithful
ρ14600000-1--7-1+-7ζ74+2ζ73+2ζ72+17572+2ζ7+1-176+2ζ747+175+2ζ7473+17675+2ζ72+1ζ76+2ζ73+2ζ7+100    complex faithful
ρ15600000-1+-7-1--7ζ76+2ζ73+2ζ7+175+2ζ7473+1-17675+2ζ72+176+2ζ747+1ζ74+2ζ73+2ζ72+17572+2ζ7+100    complex faithful
ρ16600000-1--7-1+-776+2ζ747+1ζ74+2ζ73+2ζ72+1-17572+2ζ7+1ζ76+2ζ73+2ζ7+175+2ζ7473+17675+2ζ72+100    complex faithful
ρ17600000-1--7-1+-77572+2ζ7+176+2ζ747+1-1ζ74+2ζ73+2ζ72+17675+2ζ72+1ζ76+2ζ73+2ζ7+175+2ζ7473+100    complex faithful

Smallest permutation representation of C73F7
On 42 points
Generators in S42
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)
(1 2 3 4 5 6 7)(8 10 12 14 9 11 13)(15 19 16 20 17 21 18)(22 28 27 26 25 24 23)(29 34 32 30 35 33 31)(36 39 42 38 41 37 40)
(1 37 11 22 16 32)(2 39 8 23 18 29)(3 41 12 24 20 33)(4 36 9 25 15 30)(5 38 13 26 17 34)(6 40 10 27 19 31)(7 42 14 28 21 35)

G:=sub<Sym(42)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42), (1,2,3,4,5,6,7)(8,10,12,14,9,11,13)(15,19,16,20,17,21,18)(22,28,27,26,25,24,23)(29,34,32,30,35,33,31)(36,39,42,38,41,37,40), (1,37,11,22,16,32)(2,39,8,23,18,29)(3,41,12,24,20,33)(4,36,9,25,15,30)(5,38,13,26,17,34)(6,40,10,27,19,31)(7,42,14,28,21,35)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42), (1,2,3,4,5,6,7)(8,10,12,14,9,11,13)(15,19,16,20,17,21,18)(22,28,27,26,25,24,23)(29,34,32,30,35,33,31)(36,39,42,38,41,37,40), (1,37,11,22,16,32)(2,39,8,23,18,29)(3,41,12,24,20,33)(4,36,9,25,15,30)(5,38,13,26,17,34)(6,40,10,27,19,31)(7,42,14,28,21,35) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42)], [(1,2,3,4,5,6,7),(8,10,12,14,9,11,13),(15,19,16,20,17,21,18),(22,28,27,26,25,24,23),(29,34,32,30,35,33,31),(36,39,42,38,41,37,40)], [(1,37,11,22,16,32),(2,39,8,23,18,29),(3,41,12,24,20,33),(4,36,9,25,15,30),(5,38,13,26,17,34),(6,40,10,27,19,31),(7,42,14,28,21,35)]])

Matrix representation of C73F7 in GL6(𝔽43)

3500000
0210000
0011000
0003500
0000210
0000011
,
3500000
0110000
0021000
0001600
000040
0000041
,
000010
000001
000100
010000
001000
100000

G:=sub<GL(6,GF(43))| [35,0,0,0,0,0,0,21,0,0,0,0,0,0,11,0,0,0,0,0,0,35,0,0,0,0,0,0,21,0,0,0,0,0,0,11],[35,0,0,0,0,0,0,11,0,0,0,0,0,0,21,0,0,0,0,0,0,16,0,0,0,0,0,0,4,0,0,0,0,0,0,41],[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0] >;

C73F7 in GAP, Magma, Sage, TeX

C_7\rtimes_3F_7
% in TeX

G:=Group("C7:3F7");
// GroupNames label

G:=SmallGroup(294,11);
// by ID

G=gap.SmallGroup(294,11);
# by ID

G:=PCGroup([4,-2,-3,-7,-7,78,4035,1351]);
// Polycyclic

G:=Group<a,b,c|a^7=b^7=c^6=1,a*b=b*a,c*a*c^-1=a^4,c*b*c^-1=b^5>;
// generators/relations

Export

Subgroup lattice of C73F7 in TeX
Character table of C73F7 in TeX

׿
×
𝔽