Extensions 1→N→G→Q→1 with N=C2×Dic19 and Q=C2

Direct product G=N×Q with N=C2×Dic19 and Q=C2
dρLabelID
C22×Dic19304C2^2xDic19304,35

Semidirect products G=N:Q with N=C2×Dic19 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic19)⋊1C2 = D38⋊C4φ: C2/C1C2 ⊆ Out C2×Dic19152(C2xDic19):1C2304,13
(C2×Dic19)⋊2C2 = C23.D19φ: C2/C1C2 ⊆ Out C2×Dic19152(C2xDic19):2C2304,18
(C2×Dic19)⋊3C2 = D42D19φ: C2/C1C2 ⊆ Out C2×Dic191524-(C2xDic19):3C2304,32
(C2×Dic19)⋊4C2 = C2×C19⋊D4φ: C2/C1C2 ⊆ Out C2×Dic19152(C2xDic19):4C2304,36
(C2×Dic19)⋊5C2 = C2×C4×D19φ: trivial image152(C2xDic19):5C2304,28

Non-split extensions G=N.Q with N=C2×Dic19 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic19).1C2 = Dic19⋊C4φ: C2/C1C2 ⊆ Out C2×Dic19304(C2xDic19).1C2304,11
(C2×Dic19).2C2 = C76⋊C4φ: C2/C1C2 ⊆ Out C2×Dic19304(C2xDic19).2C2304,12
(C2×Dic19).3C2 = C2×Dic38φ: C2/C1C2 ⊆ Out C2×Dic19304(C2xDic19).3C2304,27
(C2×Dic19).4C2 = C4×Dic19φ: trivial image304(C2xDic19).4C2304,10

׿
×
𝔽