Copied to
clipboard

G = C2×C19⋊D4order 304 = 24·19

Direct product of C2 and C19⋊D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C19⋊D4, C382D4, C23⋊D19, C222D38, D383C22, C38.10C23, Dic192C22, C193(C2×D4), (C2×C38)⋊3C22, (C22×C38)⋊2C2, (C2×Dic19)⋊4C2, (C22×D19)⋊3C2, C2.10(C22×D19), SmallGroup(304,36)

Series: Derived Chief Lower central Upper central

C1C38 — C2×C19⋊D4
C1C19C38D38C22×D19 — C2×C19⋊D4
C19C38 — C2×C19⋊D4
C1C22C23

Generators and relations for C2×C19⋊D4
 G = < a,b,c,d | a2=b19=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 412 in 54 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, D4, C23, C23, C2×D4, C19, D19, C38, C38, C38, Dic19, D38, D38, C2×C38, C2×C38, C2×C38, C2×Dic19, C19⋊D4, C22×D19, C22×C38, C2×C19⋊D4
Quotients: C1, C2, C22, D4, C23, C2×D4, D19, D38, C19⋊D4, C22×D19, C2×C19⋊D4

Smallest permutation representation of C2×C19⋊D4
On 152 points
Generators in S152
(1 96)(2 97)(3 98)(4 99)(5 100)(6 101)(7 102)(8 103)(9 104)(10 105)(11 106)(12 107)(13 108)(14 109)(15 110)(16 111)(17 112)(18 113)(19 114)(20 77)(21 78)(22 79)(23 80)(24 81)(25 82)(26 83)(27 84)(28 85)(29 86)(30 87)(31 88)(32 89)(33 90)(34 91)(35 92)(36 93)(37 94)(38 95)(39 134)(40 135)(41 136)(42 137)(43 138)(44 139)(45 140)(46 141)(47 142)(48 143)(49 144)(50 145)(51 146)(52 147)(53 148)(54 149)(55 150)(56 151)(57 152)(58 115)(59 116)(60 117)(61 118)(62 119)(63 120)(64 121)(65 122)(66 123)(67 124)(68 125)(69 126)(70 127)(71 128)(72 129)(73 130)(74 131)(75 132)(76 133)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95)(96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)(115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133)(134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)
(1 39 20 58)(2 57 21 76)(3 56 22 75)(4 55 23 74)(5 54 24 73)(6 53 25 72)(7 52 26 71)(8 51 27 70)(9 50 28 69)(10 49 29 68)(11 48 30 67)(12 47 31 66)(13 46 32 65)(14 45 33 64)(15 44 34 63)(16 43 35 62)(17 42 36 61)(18 41 37 60)(19 40 38 59)(77 115 96 134)(78 133 97 152)(79 132 98 151)(80 131 99 150)(81 130 100 149)(82 129 101 148)(83 128 102 147)(84 127 103 146)(85 126 104 145)(86 125 105 144)(87 124 106 143)(88 123 107 142)(89 122 108 141)(90 121 109 140)(91 120 110 139)(92 119 111 138)(93 118 112 137)(94 117 113 136)(95 116 114 135)
(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 38)(22 37)(23 36)(24 35)(25 34)(26 33)(27 32)(28 31)(29 30)(39 58)(40 76)(41 75)(42 74)(43 73)(44 72)(45 71)(46 70)(47 69)(48 68)(49 67)(50 66)(51 65)(52 64)(53 63)(54 62)(55 61)(56 60)(57 59)(78 95)(79 94)(80 93)(81 92)(82 91)(83 90)(84 89)(85 88)(86 87)(97 114)(98 113)(99 112)(100 111)(101 110)(102 109)(103 108)(104 107)(105 106)(115 134)(116 152)(117 151)(118 150)(119 149)(120 148)(121 147)(122 146)(123 145)(124 144)(125 143)(126 142)(127 141)(128 140)(129 139)(130 138)(131 137)(132 136)(133 135)

G:=sub<Sym(152)| (1,96)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,112)(18,113)(19,114)(20,77)(21,78)(22,79)(23,80)(24,81)(25,82)(26,83)(27,84)(28,85)(29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,134)(40,135)(41,136)(42,137)(43,138)(44,139)(45,140)(46,141)(47,142)(48,143)(49,144)(50,145)(51,146)(52,147)(53,148)(54,149)(55,150)(56,151)(57,152)(58,115)(59,116)(60,117)(61,118)(62,119)(63,120)(64,121)(65,122)(66,123)(67,124)(68,125)(69,126)(70,127)(71,128)(72,129)(73,130)(74,131)(75,132)(76,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,39,20,58)(2,57,21,76)(3,56,22,75)(4,55,23,74)(5,54,24,73)(6,53,25,72)(7,52,26,71)(8,51,27,70)(9,50,28,69)(10,49,29,68)(11,48,30,67)(12,47,31,66)(13,46,32,65)(14,45,33,64)(15,44,34,63)(16,43,35,62)(17,42,36,61)(18,41,37,60)(19,40,38,59)(77,115,96,134)(78,133,97,152)(79,132,98,151)(80,131,99,150)(81,130,100,149)(82,129,101,148)(83,128,102,147)(84,127,103,146)(85,126,104,145)(86,125,105,144)(87,124,106,143)(88,123,107,142)(89,122,108,141)(90,121,109,140)(91,120,110,139)(92,119,111,138)(93,118,112,137)(94,117,113,136)(95,116,114,135), (2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,32)(28,31)(29,30)(39,58)(40,76)(41,75)(42,74)(43,73)(44,72)(45,71)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62)(55,61)(56,60)(57,59)(78,95)(79,94)(80,93)(81,92)(82,91)(83,90)(84,89)(85,88)(86,87)(97,114)(98,113)(99,112)(100,111)(101,110)(102,109)(103,108)(104,107)(105,106)(115,134)(116,152)(117,151)(118,150)(119,149)(120,148)(121,147)(122,146)(123,145)(124,144)(125,143)(126,142)(127,141)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135)>;

G:=Group( (1,96)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,112)(18,113)(19,114)(20,77)(21,78)(22,79)(23,80)(24,81)(25,82)(26,83)(27,84)(28,85)(29,86)(30,87)(31,88)(32,89)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,134)(40,135)(41,136)(42,137)(43,138)(44,139)(45,140)(46,141)(47,142)(48,143)(49,144)(50,145)(51,146)(52,147)(53,148)(54,149)(55,150)(56,151)(57,152)(58,115)(59,116)(60,117)(61,118)(62,119)(63,120)(64,121)(65,122)(66,123)(67,124)(68,125)(69,126)(70,127)(71,128)(72,129)(73,130)(74,131)(75,132)(76,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,39,20,58)(2,57,21,76)(3,56,22,75)(4,55,23,74)(5,54,24,73)(6,53,25,72)(7,52,26,71)(8,51,27,70)(9,50,28,69)(10,49,29,68)(11,48,30,67)(12,47,31,66)(13,46,32,65)(14,45,33,64)(15,44,34,63)(16,43,35,62)(17,42,36,61)(18,41,37,60)(19,40,38,59)(77,115,96,134)(78,133,97,152)(79,132,98,151)(80,131,99,150)(81,130,100,149)(82,129,101,148)(83,128,102,147)(84,127,103,146)(85,126,104,145)(86,125,105,144)(87,124,106,143)(88,123,107,142)(89,122,108,141)(90,121,109,140)(91,120,110,139)(92,119,111,138)(93,118,112,137)(94,117,113,136)(95,116,114,135), (2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,32)(28,31)(29,30)(39,58)(40,76)(41,75)(42,74)(43,73)(44,72)(45,71)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62)(55,61)(56,60)(57,59)(78,95)(79,94)(80,93)(81,92)(82,91)(83,90)(84,89)(85,88)(86,87)(97,114)(98,113)(99,112)(100,111)(101,110)(102,109)(103,108)(104,107)(105,106)(115,134)(116,152)(117,151)(118,150)(119,149)(120,148)(121,147)(122,146)(123,145)(124,144)(125,143)(126,142)(127,141)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135) );

G=PermutationGroup([[(1,96),(2,97),(3,98),(4,99),(5,100),(6,101),(7,102),(8,103),(9,104),(10,105),(11,106),(12,107),(13,108),(14,109),(15,110),(16,111),(17,112),(18,113),(19,114),(20,77),(21,78),(22,79),(23,80),(24,81),(25,82),(26,83),(27,84),(28,85),(29,86),(30,87),(31,88),(32,89),(33,90),(34,91),(35,92),(36,93),(37,94),(38,95),(39,134),(40,135),(41,136),(42,137),(43,138),(44,139),(45,140),(46,141),(47,142),(48,143),(49,144),(50,145),(51,146),(52,147),(53,148),(54,149),(55,150),(56,151),(57,152),(58,115),(59,116),(60,117),(61,118),(62,119),(63,120),(64,121),(65,122),(66,123),(67,124),(68,125),(69,126),(70,127),(71,128),(72,129),(73,130),(74,131),(75,132),(76,133)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95),(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114),(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133),(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)], [(1,39,20,58),(2,57,21,76),(3,56,22,75),(4,55,23,74),(5,54,24,73),(6,53,25,72),(7,52,26,71),(8,51,27,70),(9,50,28,69),(10,49,29,68),(11,48,30,67),(12,47,31,66),(13,46,32,65),(14,45,33,64),(15,44,34,63),(16,43,35,62),(17,42,36,61),(18,41,37,60),(19,40,38,59),(77,115,96,134),(78,133,97,152),(79,132,98,151),(80,131,99,150),(81,130,100,149),(82,129,101,148),(83,128,102,147),(84,127,103,146),(85,126,104,145),(86,125,105,144),(87,124,106,143),(88,123,107,142),(89,122,108,141),(90,121,109,140),(91,120,110,139),(92,119,111,138),(93,118,112,137),(94,117,113,136),(95,116,114,135)], [(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,38),(22,37),(23,36),(24,35),(25,34),(26,33),(27,32),(28,31),(29,30),(39,58),(40,76),(41,75),(42,74),(43,73),(44,72),(45,71),(46,70),(47,69),(48,68),(49,67),(50,66),(51,65),(52,64),(53,63),(54,62),(55,61),(56,60),(57,59),(78,95),(79,94),(80,93),(81,92),(82,91),(83,90),(84,89),(85,88),(86,87),(97,114),(98,113),(99,112),(100,111),(101,110),(102,109),(103,108),(104,107),(105,106),(115,134),(116,152),(117,151),(118,150),(119,149),(120,148),(121,147),(122,146),(123,145),(124,144),(125,143),(126,142),(127,141),(128,140),(129,139),(130,138),(131,137),(132,136),(133,135)]])

82 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B19A···19I38A···38BK
order122222224419···1938···38
size111122383838382···22···2

82 irreducible representations

dim111112222
type++++++++
imageC1C2C2C2C2D4D19D38C19⋊D4
kernelC2×C19⋊D4C2×Dic19C19⋊D4C22×D19C22×C38C38C23C22C2
# reps11411292736

Matrix representation of C2×C19⋊D4 in GL4(𝔽229) generated by

228000
022800
002280
000228
,
3822800
10013600
0091228
0024191
,
1995500
1963000
0019202
00200210
,
1995500
1963000
007979
00179150
G:=sub<GL(4,GF(229))| [228,0,0,0,0,228,0,0,0,0,228,0,0,0,0,228],[38,100,0,0,228,136,0,0,0,0,91,24,0,0,228,191],[199,196,0,0,55,30,0,0,0,0,19,200,0,0,202,210],[199,196,0,0,55,30,0,0,0,0,79,179,0,0,79,150] >;

C2×C19⋊D4 in GAP, Magma, Sage, TeX

C_2\times C_{19}\rtimes D_4
% in TeX

G:=Group("C2xC19:D4");
// GroupNames label

G:=SmallGroup(304,36);
// by ID

G=gap.SmallGroup(304,36);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-19,182,7204]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^19=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽