Copied to
clipboard

G = D42D19order 304 = 24·19

The semidirect product of D4 and D19 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D42D19, C4.5D38, Dic383C2, C76.5C22, C38.6C23, C22.1D38, D38.2C22, Dic19.4C22, (C4×D19)⋊2C2, (D4×C19)⋊3C2, C192(C4○D4), C19⋊D42C2, (C2×C38).C22, (C2×Dic19)⋊3C2, C2.7(C22×D19), SmallGroup(304,32)

Series: Derived Chief Lower central Upper central

C1C38 — D42D19
C1C19C38D38C4×D19 — D42D19
C19C38 — D42D19
C1C2D4

Generators and relations for D42D19
 G = < a,b,c,d | a4=b2=c19=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >

2C2
2C2
38C2
19C4
19C22
19C4
19C4
2C38
2C38
2D19
19C2×C4
19D4
19D4
19C2×C4
19Q8
19C2×C4
19C4○D4

Smallest permutation representation of D42D19
On 152 points
Generators in S152
(1 112 29 93)(2 113 30 94)(3 114 31 95)(4 96 32 77)(5 97 33 78)(6 98 34 79)(7 99 35 80)(8 100 36 81)(9 101 37 82)(10 102 38 83)(11 103 20 84)(12 104 21 85)(13 105 22 86)(14 106 23 87)(15 107 24 88)(16 108 25 89)(17 109 26 90)(18 110 27 91)(19 111 28 92)(39 144 69 120)(40 145 70 121)(41 146 71 122)(42 147 72 123)(43 148 73 124)(44 149 74 125)(45 150 75 126)(46 151 76 127)(47 152 58 128)(48 134 59 129)(49 135 60 130)(50 136 61 131)(51 137 62 132)(52 138 63 133)(53 139 64 115)(54 140 65 116)(55 141 66 117)(56 142 67 118)(57 143 68 119)
(1 115)(2 116)(3 117)(4 118)(5 119)(6 120)(7 121)(8 122)(9 123)(10 124)(11 125)(12 126)(13 127)(14 128)(15 129)(16 130)(17 131)(18 132)(19 133)(20 149)(21 150)(22 151)(23 152)(24 134)(25 135)(26 136)(27 137)(28 138)(29 139)(30 140)(31 141)(32 142)(33 143)(34 144)(35 145)(36 146)(37 147)(38 148)(39 79)(40 80)(41 81)(42 82)(43 83)(44 84)(45 85)(46 86)(47 87)(48 88)(49 89)(50 90)(51 91)(52 92)(53 93)(54 94)(55 95)(56 77)(57 78)(58 106)(59 107)(60 108)(61 109)(62 110)(63 111)(64 112)(65 113)(66 114)(67 96)(68 97)(69 98)(70 99)(71 100)(72 101)(73 102)(74 103)(75 104)(76 105)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95)(96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)(115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133)(134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)
(1 19)(2 18)(3 17)(4 16)(5 15)(6 14)(7 13)(8 12)(9 11)(20 37)(21 36)(22 35)(23 34)(24 33)(25 32)(26 31)(27 30)(28 29)(39 58)(40 76)(41 75)(42 74)(43 73)(44 72)(45 71)(46 70)(47 69)(48 68)(49 67)(50 66)(51 65)(52 64)(53 63)(54 62)(55 61)(56 60)(57 59)(77 89)(78 88)(79 87)(80 86)(81 85)(82 84)(90 95)(91 94)(92 93)(96 108)(97 107)(98 106)(99 105)(100 104)(101 103)(109 114)(110 113)(111 112)(115 138)(116 137)(117 136)(118 135)(119 134)(120 152)(121 151)(122 150)(123 149)(124 148)(125 147)(126 146)(127 145)(128 144)(129 143)(130 142)(131 141)(132 140)(133 139)

G:=sub<Sym(152)| (1,112,29,93)(2,113,30,94)(3,114,31,95)(4,96,32,77)(5,97,33,78)(6,98,34,79)(7,99,35,80)(8,100,36,81)(9,101,37,82)(10,102,38,83)(11,103,20,84)(12,104,21,85)(13,105,22,86)(14,106,23,87)(15,107,24,88)(16,108,25,89)(17,109,26,90)(18,110,27,91)(19,111,28,92)(39,144,69,120)(40,145,70,121)(41,146,71,122)(42,147,72,123)(43,148,73,124)(44,149,74,125)(45,150,75,126)(46,151,76,127)(47,152,58,128)(48,134,59,129)(49,135,60,130)(50,136,61,131)(51,137,62,132)(52,138,63,133)(53,139,64,115)(54,140,65,116)(55,141,66,117)(56,142,67,118)(57,143,68,119), (1,115)(2,116)(3,117)(4,118)(5,119)(6,120)(7,121)(8,122)(9,123)(10,124)(11,125)(12,126)(13,127)(14,128)(15,129)(16,130)(17,131)(18,132)(19,133)(20,149)(21,150)(22,151)(23,152)(24,134)(25,135)(26,136)(27,137)(28,138)(29,139)(30,140)(31,141)(32,142)(33,143)(34,144)(35,145)(36,146)(37,147)(38,148)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(56,77)(57,78)(58,106)(59,107)(60,108)(61,109)(62,110)(63,111)(64,112)(65,113)(66,114)(67,96)(68,97)(69,98)(70,99)(71,100)(72,101)(73,102)(74,103)(75,104)(76,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(20,37)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(39,58)(40,76)(41,75)(42,74)(43,73)(44,72)(45,71)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62)(55,61)(56,60)(57,59)(77,89)(78,88)(79,87)(80,86)(81,85)(82,84)(90,95)(91,94)(92,93)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103)(109,114)(110,113)(111,112)(115,138)(116,137)(117,136)(118,135)(119,134)(120,152)(121,151)(122,150)(123,149)(124,148)(125,147)(126,146)(127,145)(128,144)(129,143)(130,142)(131,141)(132,140)(133,139)>;

G:=Group( (1,112,29,93)(2,113,30,94)(3,114,31,95)(4,96,32,77)(5,97,33,78)(6,98,34,79)(7,99,35,80)(8,100,36,81)(9,101,37,82)(10,102,38,83)(11,103,20,84)(12,104,21,85)(13,105,22,86)(14,106,23,87)(15,107,24,88)(16,108,25,89)(17,109,26,90)(18,110,27,91)(19,111,28,92)(39,144,69,120)(40,145,70,121)(41,146,71,122)(42,147,72,123)(43,148,73,124)(44,149,74,125)(45,150,75,126)(46,151,76,127)(47,152,58,128)(48,134,59,129)(49,135,60,130)(50,136,61,131)(51,137,62,132)(52,138,63,133)(53,139,64,115)(54,140,65,116)(55,141,66,117)(56,142,67,118)(57,143,68,119), (1,115)(2,116)(3,117)(4,118)(5,119)(6,120)(7,121)(8,122)(9,123)(10,124)(11,125)(12,126)(13,127)(14,128)(15,129)(16,130)(17,131)(18,132)(19,133)(20,149)(21,150)(22,151)(23,152)(24,134)(25,135)(26,136)(27,137)(28,138)(29,139)(30,140)(31,141)(32,142)(33,143)(34,144)(35,145)(36,146)(37,147)(38,148)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,92)(53,93)(54,94)(55,95)(56,77)(57,78)(58,106)(59,107)(60,108)(61,109)(62,110)(63,111)(64,112)(65,113)(66,114)(67,96)(68,97)(69,98)(70,99)(71,100)(72,101)(73,102)(74,103)(75,104)(76,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(20,37)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(39,58)(40,76)(41,75)(42,74)(43,73)(44,72)(45,71)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62)(55,61)(56,60)(57,59)(77,89)(78,88)(79,87)(80,86)(81,85)(82,84)(90,95)(91,94)(92,93)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103)(109,114)(110,113)(111,112)(115,138)(116,137)(117,136)(118,135)(119,134)(120,152)(121,151)(122,150)(123,149)(124,148)(125,147)(126,146)(127,145)(128,144)(129,143)(130,142)(131,141)(132,140)(133,139) );

G=PermutationGroup([[(1,112,29,93),(2,113,30,94),(3,114,31,95),(4,96,32,77),(5,97,33,78),(6,98,34,79),(7,99,35,80),(8,100,36,81),(9,101,37,82),(10,102,38,83),(11,103,20,84),(12,104,21,85),(13,105,22,86),(14,106,23,87),(15,107,24,88),(16,108,25,89),(17,109,26,90),(18,110,27,91),(19,111,28,92),(39,144,69,120),(40,145,70,121),(41,146,71,122),(42,147,72,123),(43,148,73,124),(44,149,74,125),(45,150,75,126),(46,151,76,127),(47,152,58,128),(48,134,59,129),(49,135,60,130),(50,136,61,131),(51,137,62,132),(52,138,63,133),(53,139,64,115),(54,140,65,116),(55,141,66,117),(56,142,67,118),(57,143,68,119)], [(1,115),(2,116),(3,117),(4,118),(5,119),(6,120),(7,121),(8,122),(9,123),(10,124),(11,125),(12,126),(13,127),(14,128),(15,129),(16,130),(17,131),(18,132),(19,133),(20,149),(21,150),(22,151),(23,152),(24,134),(25,135),(26,136),(27,137),(28,138),(29,139),(30,140),(31,141),(32,142),(33,143),(34,144),(35,145),(36,146),(37,147),(38,148),(39,79),(40,80),(41,81),(42,82),(43,83),(44,84),(45,85),(46,86),(47,87),(48,88),(49,89),(50,90),(51,91),(52,92),(53,93),(54,94),(55,95),(56,77),(57,78),(58,106),(59,107),(60,108),(61,109),(62,110),(63,111),(64,112),(65,113),(66,114),(67,96),(68,97),(69,98),(70,99),(71,100),(72,101),(73,102),(74,103),(75,104),(76,105)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95),(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114),(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133),(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)], [(1,19),(2,18),(3,17),(4,16),(5,15),(6,14),(7,13),(8,12),(9,11),(20,37),(21,36),(22,35),(23,34),(24,33),(25,32),(26,31),(27,30),(28,29),(39,58),(40,76),(41,75),(42,74),(43,73),(44,72),(45,71),(46,70),(47,69),(48,68),(49,67),(50,66),(51,65),(52,64),(53,63),(54,62),(55,61),(56,60),(57,59),(77,89),(78,88),(79,87),(80,86),(81,85),(82,84),(90,95),(91,94),(92,93),(96,108),(97,107),(98,106),(99,105),(100,104),(101,103),(109,114),(110,113),(111,112),(115,138),(116,137),(117,136),(118,135),(119,134),(120,152),(121,151),(122,150),(123,149),(124,148),(125,147),(126,146),(127,145),(128,144),(129,143),(130,142),(131,141),(132,140),(133,139)]])

55 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E19A···19I38A···38I38J···38AA76A···76I
order122224444419···1938···3838···3876···76
size1122382191938382···22···24···44···4

55 irreducible representations

dim11111122224
type+++++++++-
imageC1C2C2C2C2C2C4○D4D19D38D38D42D19
kernelD42D19Dic38C4×D19C2×Dic19C19⋊D4D4×C19C19D4C4C22C1
# reps111221299189

Matrix representation of D42D19 in GL4(𝔽229) generated by

228000
022800
001070
0060122
,
1000
0100
00122145
00169107
,
90100
16118500
0010
0001
,
5411600
19417500
0010
00221228
G:=sub<GL(4,GF(229))| [228,0,0,0,0,228,0,0,0,0,107,60,0,0,0,122],[1,0,0,0,0,1,0,0,0,0,122,169,0,0,145,107],[90,161,0,0,1,185,0,0,0,0,1,0,0,0,0,1],[54,194,0,0,116,175,0,0,0,0,1,221,0,0,0,228] >;

D42D19 in GAP, Magma, Sage, TeX

D_4\rtimes_2D_{19}
% in TeX

G:=Group("D4:2D19");
// GroupNames label

G:=SmallGroup(304,32);
// by ID

G=gap.SmallGroup(304,32);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-19,46,182,97,7204]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^19=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D42D19 in TeX

׿
×
𝔽