Extensions 1→N→G→Q→1 with N=2- (1+4) and Q=D5

Direct product G=N×Q with N=2- (1+4) and Q=D5
dρLabelID
D5×2- (1+4)808-D5xES-(2,2)320,1624

Semidirect products G=N:Q with N=2- (1+4) and Q=D5
extensionφ:Q→Out NdρLabelID
2- (1+4)⋊D5 = 2- (1+4)⋊D5φ: D5/C1D5 ⊆ Out 2- (1+4)324ES-(2,2):D5320,1582
2- (1+4)2D5 = 2- (1+4)2D5φ: D5/C5C2 ⊆ Out 2- (1+4)808+ES-(2,2):2D5320,872
2- (1+4)3D5 = D20.34C23φ: D5/C5C2 ⊆ Out 2- (1+4)808+ES-(2,2):3D5320,1509
2- (1+4)4D5 = D20.35C23φ: D5/C5C2 ⊆ Out 2- (1+4)1608-ES-(2,2):4D5320,1510
2- (1+4)5D5 = D20.39C23φ: trivial image808+ES-(2,2):5D5320,1625

Non-split extensions G=N.Q with N=2- (1+4) and Q=D5
extensionφ:Q→Out NdρLabelID
2- (1+4).D5 = 2- (1+4).D5φ: D5/C1D5 ⊆ Out 2- (1+4)644-ES-(2,2).D5320,1581
2- (1+4).2D5 = 2- (1+4).2D5φ: D5/C5C2 ⊆ Out 2- (1+4)808-ES-(2,2).2D5320,873

׿
×
𝔽