metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D5, C5⋊C2, sometimes denoted D10 or Dih5 or Dih10, symmetries of a regular pentagon, SmallGroup(10,1)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — D5 |
Generators and relations for D5
G = < a,b | a5=b2=1, bab=a-1 >
Character table of D5
class | 1 | 2 | 5A | 5B | |
size | 1 | 5 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | -1-√5/2 | -1+√5/2 | orthogonal faithful |
ρ4 | 2 | 0 | -1+√5/2 | -1-√5/2 | orthogonal faithful |
(1 2 3 4 5)
(1 5)(2 4)
G:=sub<Sym(5)| (1,2,3,4,5), (1,5)(2,4)>;
G:=Group( (1,2,3,4,5), (1,5)(2,4) );
G=PermutationGroup([[(1,2,3,4,5)], [(1,5),(2,4)]])
G:=TransitiveGroup(5,2);
(1 2 3 4 5)(6 7 8 9 10)
(1 8)(2 7)(3 6)(4 10)(5 9)
G:=sub<Sym(10)| (1,2,3,4,5)(6,7,8,9,10), (1,8)(2,7)(3,6)(4,10)(5,9)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10), (1,8)(2,7)(3,6)(4,10)(5,9) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10)], [(1,8),(2,7),(3,6),(4,10),(5,9)]])
G:=TransitiveGroup(10,2);
D5 is a maximal subgroup of
F5 C5⋊D5 A5 C24⋊D5
D5p: D15 D25 D35 D55 D65 D85 D95 D115 ...
D5 is a maximal quotient of
Dic5 C5⋊D5 C24⋊D5
D5p: D15 D25 D35 D55 D65 D85 D95 D115 ...
action | f(x) | Disc(f) |
---|---|---|
5T2 | x5-5x2-3 | 34·56 |
10T2 | x10-2x9-20x8+2x7+69x6-x5-69x4+2x3+20x2-2x-1 | 316·4015 |
Matrix representation of D5 ►in GL2(𝔽11) generated by
3 | 10 |
1 | 0 |
3 | 10 |
8 | 8 |
G:=sub<GL(2,GF(11))| [3,1,10,0],[3,8,10,8] >;
D5 in GAP, Magma, Sage, TeX
D_5
% in TeX
G:=Group("D5");
// GroupNames label
G:=SmallGroup(10,1);
// by ID
G=gap.SmallGroup(10,1);
# by ID
G:=PCGroup([2,-2,-5,33]);
// Polycyclic
G:=Group<a,b|a^5=b^2=1,b*a*b=a^-1>;
// generators/relations
Export