Extensions 1→N→G→Q→1 with N=Q8 and Q=C2×Dic5

Direct product G=N×Q with N=Q8 and Q=C2×Dic5
dρLabelID
C2×Q8×Dic5320C2xQ8xDic5320,1483

Semidirect products G=N:Q with N=Q8 and Q=C2×Dic5
extensionφ:Q→Out NdρLabelID
Q81(C2×Dic5) = SD16×Dic5φ: C2×Dic5/Dic5C2 ⊆ Out Q8160Q8:1(C2xDic5)320,788
Q82(C2×Dic5) = SD16⋊Dic5φ: C2×Dic5/Dic5C2 ⊆ Out Q8160Q8:2(C2xDic5)320,791
Q83(C2×Dic5) = C2×Q8⋊Dic5φ: C2×Dic5/C2×C10C2 ⊆ Out Q8320Q8:3(C2xDic5)320,851
Q84(C2×Dic5) = C4○D4⋊Dic5φ: C2×Dic5/C2×C10C2 ⊆ Out Q8160Q8:4(C2xDic5)320,859
Q85(C2×Dic5) = C2×D42Dic5φ: C2×Dic5/C2×C10C2 ⊆ Out Q880Q8:5(C2xDic5)320,862
Q86(C2×Dic5) = C4○D4×Dic5φ: trivial image160Q8:6(C2xDic5)320,1498
Q87(C2×Dic5) = C10.1062- 1+4φ: trivial image160Q8:7(C2xDic5)320,1499

Non-split extensions G=N.Q with N=Q8 and Q=C2×Dic5
extensionφ:Q→Out NdρLabelID
Q8.1(C2×Dic5) = Q16×Dic5φ: C2×Dic5/Dic5C2 ⊆ Out Q8320Q8.1(C2xDic5)320,810
Q8.2(C2×Dic5) = Q16⋊Dic5φ: C2×Dic5/Dic5C2 ⊆ Out Q8320Q8.2(C2xDic5)320,811
Q8.3(C2×Dic5) = D85Dic5φ: C2×Dic5/Dic5C2 ⊆ Out Q8804Q8.3(C2xDic5)320,823
Q8.4(C2×Dic5) = D84Dic5φ: C2×Dic5/Dic5C2 ⊆ Out Q8804Q8.4(C2xDic5)320,824
Q8.5(C2×Dic5) = (Q8×C10)⋊16C4φ: C2×Dic5/C2×C10C2 ⊆ Out Q8160Q8.5(C2xDic5)320,852
Q8.6(C2×Dic5) = C20.(C2×D4)φ: C2×Dic5/C2×C10C2 ⊆ Out Q8160Q8.6(C2xDic5)320,860
Q8.7(C2×Dic5) = (D4×C10)⋊21C4φ: C2×Dic5/C2×C10C2 ⊆ Out Q8804Q8.7(C2xDic5)320,863
Q8.8(C2×Dic5) = C10.422- 1+4φ: trivial image160Q8.8(C2xDic5)320,1484
Q8.9(C2×Dic5) = C2×D4.Dic5φ: trivial image160Q8.9(C2xDic5)320,1490
Q8.10(C2×Dic5) = C20.76C24φ: trivial image804Q8.10(C2xDic5)320,1491

׿
×
𝔽