Copied to
clipboard

G = SD16×Dic5order 320 = 26·5

Direct product of SD16 and Dic5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: SD16×Dic5, C58(C4×SD16), C4025(C2×C4), C85(C2×Dic5), Q81(C2×Dic5), (Q8×Dic5)⋊3C2, (C5×SD16)⋊7C4, (C8×Dic5)⋊9C2, C406C426C2, C2.7(D5×SD16), (C2×C8).261D10, C10.125(C4×D4), (D4×Dic5).7C2, D4.1(C2×Dic5), (C2×SD16).5D5, C2.12(D4×Dic5), (C2×D4).142D10, C20.95(C4○D4), C10.59(C4○D8), Q8⋊Dic524C2, (C2×Q8).112D10, (C10×SD16).3C2, C10.42(C2×SD16), C22.116(D4×D5), C4.30(D42D5), C4.3(C22×Dic5), (C2×C20).438C23, C20.132(C22×C4), (C2×C40).162C22, (C2×Dic5).281D4, D4⋊Dic5.14C2, (D4×C10).87C22, (Q8×C10).68C22, C2.7(SD163D5), C4⋊Dic5.168C22, (C4×Dic5).271C22, (C5×Q8)⋊15(C2×C4), (C5×D4).22(C2×C4), (C2×C10).350(C2×D4), (C2×C4).527(C22×D5), (C2×C52C8).280C22, SmallGroup(320,788)

Series: Derived Chief Lower central Upper central

C1C20 — SD16×Dic5
C1C5C10C2×C10C2×C20C4×Dic5D4×Dic5 — SD16×Dic5
C5C10C20 — SD16×Dic5
C1C22C2×C4C2×SD16

Generators and relations for SD16×Dic5
 G = < a,b,c,d | a8=b2=c10=1, d2=c5, bab=a3, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 390 in 122 conjugacy classes, 59 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, C2×C10, C2×C10, C4×C8, D4⋊C4, Q8⋊C4, C4.Q8, C4×D4, C4×Q8, C2×SD16, C52C8, C40, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C5×Q8, C22×C10, C4×SD16, C2×C52C8, C4×Dic5, C4×Dic5, C4⋊Dic5, C4⋊Dic5, C23.D5, C2×C40, C5×SD16, C22×Dic5, D4×C10, Q8×C10, C8×Dic5, C406C4, D4⋊Dic5, Q8⋊Dic5, D4×Dic5, Q8×Dic5, C10×SD16, SD16×Dic5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, SD16, C22×C4, C2×D4, C4○D4, Dic5, D10, C4×D4, C2×SD16, C4○D8, C2×Dic5, C22×D5, C4×SD16, D4×D5, D42D5, C22×Dic5, D5×SD16, SD163D5, D4×Dic5, SD16×Dic5

Smallest permutation representation of SD16×Dic5
On 160 points
Generators in S160
(1 90 15 74 39 60 48 61)(2 81 16 75 40 51 49 62)(3 82 17 76 31 52 50 63)(4 83 18 77 32 53 41 64)(5 84 19 78 33 54 42 65)(6 85 20 79 34 55 43 66)(7 86 11 80 35 56 44 67)(8 87 12 71 36 57 45 68)(9 88 13 72 37 58 46 69)(10 89 14 73 38 59 47 70)(21 92 156 111 137 127 148 103)(22 93 157 112 138 128 149 104)(23 94 158 113 139 129 150 105)(24 95 159 114 140 130 141 106)(25 96 160 115 131 121 142 107)(26 97 151 116 132 122 143 108)(27 98 152 117 133 123 144 109)(28 99 153 118 134 124 145 110)(29 100 154 119 135 125 146 101)(30 91 155 120 136 126 147 102)
(11 44)(12 45)(13 46)(14 47)(15 48)(16 49)(17 50)(18 41)(19 42)(20 43)(21 156)(22 157)(23 158)(24 159)(25 160)(26 151)(27 152)(28 153)(29 154)(30 155)(51 62)(52 63)(53 64)(54 65)(55 66)(56 67)(57 68)(58 69)(59 70)(60 61)(71 87)(72 88)(73 89)(74 90)(75 81)(76 82)(77 83)(78 84)(79 85)(80 86)(91 126)(92 127)(93 128)(94 129)(95 130)(96 121)(97 122)(98 123)(99 124)(100 125)(131 142)(132 143)(133 144)(134 145)(135 146)(136 147)(137 148)(138 149)(139 150)(140 141)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 116 6 111)(2 115 7 120)(3 114 8 119)(4 113 9 118)(5 112 10 117)(11 126 16 121)(12 125 17 130)(13 124 18 129)(14 123 19 128)(15 122 20 127)(21 60 26 55)(22 59 27 54)(23 58 28 53)(24 57 29 52)(25 56 30 51)(31 106 36 101)(32 105 37 110)(33 104 38 109)(34 103 39 108)(35 102 40 107)(41 94 46 99)(42 93 47 98)(43 92 48 97)(44 91 49 96)(45 100 50 95)(61 151 66 156)(62 160 67 155)(63 159 68 154)(64 158 69 153)(65 157 70 152)(71 146 76 141)(72 145 77 150)(73 144 78 149)(74 143 79 148)(75 142 80 147)(81 131 86 136)(82 140 87 135)(83 139 88 134)(84 138 89 133)(85 137 90 132)

G:=sub<Sym(160)| (1,90,15,74,39,60,48,61)(2,81,16,75,40,51,49,62)(3,82,17,76,31,52,50,63)(4,83,18,77,32,53,41,64)(5,84,19,78,33,54,42,65)(6,85,20,79,34,55,43,66)(7,86,11,80,35,56,44,67)(8,87,12,71,36,57,45,68)(9,88,13,72,37,58,46,69)(10,89,14,73,38,59,47,70)(21,92,156,111,137,127,148,103)(22,93,157,112,138,128,149,104)(23,94,158,113,139,129,150,105)(24,95,159,114,140,130,141,106)(25,96,160,115,131,121,142,107)(26,97,151,116,132,122,143,108)(27,98,152,117,133,123,144,109)(28,99,153,118,134,124,145,110)(29,100,154,119,135,125,146,101)(30,91,155,120,136,126,147,102), (11,44)(12,45)(13,46)(14,47)(15,48)(16,49)(17,50)(18,41)(19,42)(20,43)(21,156)(22,157)(23,158)(24,159)(25,160)(26,151)(27,152)(28,153)(29,154)(30,155)(51,62)(52,63)(53,64)(54,65)(55,66)(56,67)(57,68)(58,69)(59,70)(60,61)(71,87)(72,88)(73,89)(74,90)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86)(91,126)(92,127)(93,128)(94,129)(95,130)(96,121)(97,122)(98,123)(99,124)(100,125)(131,142)(132,143)(133,144)(134,145)(135,146)(136,147)(137,148)(138,149)(139,150)(140,141), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,116,6,111)(2,115,7,120)(3,114,8,119)(4,113,9,118)(5,112,10,117)(11,126,16,121)(12,125,17,130)(13,124,18,129)(14,123,19,128)(15,122,20,127)(21,60,26,55)(22,59,27,54)(23,58,28,53)(24,57,29,52)(25,56,30,51)(31,106,36,101)(32,105,37,110)(33,104,38,109)(34,103,39,108)(35,102,40,107)(41,94,46,99)(42,93,47,98)(43,92,48,97)(44,91,49,96)(45,100,50,95)(61,151,66,156)(62,160,67,155)(63,159,68,154)(64,158,69,153)(65,157,70,152)(71,146,76,141)(72,145,77,150)(73,144,78,149)(74,143,79,148)(75,142,80,147)(81,131,86,136)(82,140,87,135)(83,139,88,134)(84,138,89,133)(85,137,90,132)>;

G:=Group( (1,90,15,74,39,60,48,61)(2,81,16,75,40,51,49,62)(3,82,17,76,31,52,50,63)(4,83,18,77,32,53,41,64)(5,84,19,78,33,54,42,65)(6,85,20,79,34,55,43,66)(7,86,11,80,35,56,44,67)(8,87,12,71,36,57,45,68)(9,88,13,72,37,58,46,69)(10,89,14,73,38,59,47,70)(21,92,156,111,137,127,148,103)(22,93,157,112,138,128,149,104)(23,94,158,113,139,129,150,105)(24,95,159,114,140,130,141,106)(25,96,160,115,131,121,142,107)(26,97,151,116,132,122,143,108)(27,98,152,117,133,123,144,109)(28,99,153,118,134,124,145,110)(29,100,154,119,135,125,146,101)(30,91,155,120,136,126,147,102), (11,44)(12,45)(13,46)(14,47)(15,48)(16,49)(17,50)(18,41)(19,42)(20,43)(21,156)(22,157)(23,158)(24,159)(25,160)(26,151)(27,152)(28,153)(29,154)(30,155)(51,62)(52,63)(53,64)(54,65)(55,66)(56,67)(57,68)(58,69)(59,70)(60,61)(71,87)(72,88)(73,89)(74,90)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86)(91,126)(92,127)(93,128)(94,129)(95,130)(96,121)(97,122)(98,123)(99,124)(100,125)(131,142)(132,143)(133,144)(134,145)(135,146)(136,147)(137,148)(138,149)(139,150)(140,141), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,116,6,111)(2,115,7,120)(3,114,8,119)(4,113,9,118)(5,112,10,117)(11,126,16,121)(12,125,17,130)(13,124,18,129)(14,123,19,128)(15,122,20,127)(21,60,26,55)(22,59,27,54)(23,58,28,53)(24,57,29,52)(25,56,30,51)(31,106,36,101)(32,105,37,110)(33,104,38,109)(34,103,39,108)(35,102,40,107)(41,94,46,99)(42,93,47,98)(43,92,48,97)(44,91,49,96)(45,100,50,95)(61,151,66,156)(62,160,67,155)(63,159,68,154)(64,158,69,153)(65,157,70,152)(71,146,76,141)(72,145,77,150)(73,144,78,149)(74,143,79,148)(75,142,80,147)(81,131,86,136)(82,140,87,135)(83,139,88,134)(84,138,89,133)(85,137,90,132) );

G=PermutationGroup([[(1,90,15,74,39,60,48,61),(2,81,16,75,40,51,49,62),(3,82,17,76,31,52,50,63),(4,83,18,77,32,53,41,64),(5,84,19,78,33,54,42,65),(6,85,20,79,34,55,43,66),(7,86,11,80,35,56,44,67),(8,87,12,71,36,57,45,68),(9,88,13,72,37,58,46,69),(10,89,14,73,38,59,47,70),(21,92,156,111,137,127,148,103),(22,93,157,112,138,128,149,104),(23,94,158,113,139,129,150,105),(24,95,159,114,140,130,141,106),(25,96,160,115,131,121,142,107),(26,97,151,116,132,122,143,108),(27,98,152,117,133,123,144,109),(28,99,153,118,134,124,145,110),(29,100,154,119,135,125,146,101),(30,91,155,120,136,126,147,102)], [(11,44),(12,45),(13,46),(14,47),(15,48),(16,49),(17,50),(18,41),(19,42),(20,43),(21,156),(22,157),(23,158),(24,159),(25,160),(26,151),(27,152),(28,153),(29,154),(30,155),(51,62),(52,63),(53,64),(54,65),(55,66),(56,67),(57,68),(58,69),(59,70),(60,61),(71,87),(72,88),(73,89),(74,90),(75,81),(76,82),(77,83),(78,84),(79,85),(80,86),(91,126),(92,127),(93,128),(94,129),(95,130),(96,121),(97,122),(98,123),(99,124),(100,125),(131,142),(132,143),(133,144),(134,145),(135,146),(136,147),(137,148),(138,149),(139,150),(140,141)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,116,6,111),(2,115,7,120),(3,114,8,119),(4,113,9,118),(5,112,10,117),(11,126,16,121),(12,125,17,130),(13,124,18,129),(14,123,19,128),(15,122,20,127),(21,60,26,55),(22,59,27,54),(23,58,28,53),(24,57,29,52),(25,56,30,51),(31,106,36,101),(32,105,37,110),(33,104,38,109),(34,103,39,108),(35,102,40,107),(41,94,46,99),(42,93,47,98),(43,92,48,97),(44,91,49,96),(45,100,50,95),(61,151,66,156),(62,160,67,155),(63,159,68,154),(64,158,69,153),(65,157,70,152),(71,146,76,141),(72,145,77,150),(73,144,78,149),(74,143,79,148),(75,142,80,147),(81,131,86,136),(82,140,87,135),(83,139,88,134),(84,138,89,133),(85,137,90,132)]])

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L4M4N5A5B8A8B8C8D8E8F8G8H10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222244444444444444558888888810···1010101010202020202020202040···40
size11114422445555101020202020222222101010102···28888444488884···4

56 irreducible representations

dim1111111112222222224444
type+++++++++++-++-+
imageC1C2C2C2C2C2C2C2C4D4D5SD16C4○D4D10Dic5D10D10C4○D8D42D5D4×D5D5×SD16SD163D5
kernelSD16×Dic5C8×Dic5C406C4D4⋊Dic5Q8⋊Dic5D4×Dic5Q8×Dic5C10×SD16C5×SD16C2×Dic5C2×SD16Dic5C20C2×C8SD16C2×D4C2×Q8C10C4C22C2C2
# reps1111111182242282242244

Matrix representation of SD16×Dic5 in GL4(𝔽41) generated by

02600
303000
00400
00040
,
1100
04000
0010
0001
,
40000
04000
00140
00366
,
32000
03200
00932
00032
G:=sub<GL(4,GF(41))| [0,30,0,0,26,30,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,1,40,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,40,0,0,0,0,1,36,0,0,40,6],[32,0,0,0,0,32,0,0,0,0,9,0,0,0,32,32] >;

SD16×Dic5 in GAP, Magma, Sage, TeX

{\rm SD}_{16}\times {\rm Dic}_5
% in TeX

G:=Group("SD16xDic5");
// GroupNames label

G:=SmallGroup(320,788);
// by ID

G=gap.SmallGroup(320,788);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,219,184,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^10=1,d^2=c^5,b*a*b=a^3,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽