Copied to
clipboard

G = (Q8×C10)⋊16C4order 320 = 26·5

2nd semidirect product of Q8×C10 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (Q8×C10)⋊16C4, (C2×Q8)⋊4Dic5, C20.208(C2×D4), (C2×C20).193D4, Q8.5(C2×Dic5), (C22×Q8).2D5, Q8⋊Dic537C2, (C2×Q8).166D10, C20.81(C22⋊C4), C20.141(C22×C4), (C2×C20).475C23, (C22×C10).199D4, (C22×C4).154D10, C23.87(C5⋊D4), C55(C23.38D4), C4.11(C23.D5), C4.12(C22×Dic5), C2.5(C20.C23), C4⋊Dic5.353C22, (Q8×C10).201C22, C10.101(C8.C22), (C22×C20).201C22, C22.21(C23.D5), C23.21D10.19C2, (Q8×C2×C10).2C2, C4.92(C2×C5⋊D4), (C5×Q8).38(C2×C4), (C2×C20).293(C2×C4), (C2×C10).559(C2×D4), (C2×C4).25(C2×Dic5), C22.94(C2×C5⋊D4), C2.14(C2×C23.D5), (C2×C4).198(C5⋊D4), C10.119(C2×C22⋊C4), (C2×C4).561(C22×D5), (C2×C4.Dic5).27C2, (C2×C52C8).174C22, (C2×C10).179(C22⋊C4), SmallGroup(320,852)

Series: Derived Chief Lower central Upper central

C1C20 — (Q8×C10)⋊16C4
C1C5C10C2×C10C2×C20C4⋊Dic5C23.21D10 — (Q8×C10)⋊16C4
C5C10C20 — (Q8×C10)⋊16C4
C1C22C22×C4C22×Q8

Generators and relations for (Q8×C10)⋊16C4
 G = < a,b,c,d | a10=b4=d4=1, c2=b2, ab=ba, ac=ca, dad-1=a-1b2, cbc-1=b-1, bd=db, dcd-1=a5b-1c >

Subgroups: 366 in 150 conjugacy classes, 71 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, Q8, Q8, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×Q8, C2×Q8, Dic5, C20, C20, C20, C2×C10, C2×C10, C2×C10, Q8⋊C4, C42⋊C2, C2×M4(2), C22×Q8, C52C8, C2×Dic5, C2×C20, C2×C20, C2×C20, C5×Q8, C5×Q8, C22×C10, C23.38D4, C2×C52C8, C4.Dic5, C4×Dic5, C4⋊Dic5, C23.D5, C22×C20, C22×C20, Q8×C10, Q8×C10, Q8⋊Dic5, C2×C4.Dic5, C23.21D10, Q8×C2×C10, (Q8×C10)⋊16C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, Dic5, D10, C2×C22⋊C4, C8.C22, C2×Dic5, C5⋊D4, C22×D5, C23.38D4, C23.D5, C22×Dic5, C2×C5⋊D4, C20.C23, C2×C23.D5, (Q8×C10)⋊16C4

Smallest permutation representation of (Q8×C10)⋊16C4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 45 16 32)(2 46 17 33)(3 47 18 34)(4 48 19 35)(5 49 20 36)(6 50 11 37)(7 41 12 38)(8 42 13 39)(9 43 14 40)(10 44 15 31)(21 132 145 157)(22 133 146 158)(23 134 147 159)(24 135 148 160)(25 136 149 151)(26 137 150 152)(27 138 141 153)(28 139 142 154)(29 140 143 155)(30 131 144 156)(51 63 90 78)(52 64 81 79)(53 65 82 80)(54 66 83 71)(55 67 84 72)(56 68 85 73)(57 69 86 74)(58 70 87 75)(59 61 88 76)(60 62 89 77)(91 128 116 104)(92 129 117 105)(93 130 118 106)(94 121 119 107)(95 122 120 108)(96 123 111 109)(97 124 112 110)(98 125 113 101)(99 126 114 102)(100 127 115 103)
(1 72 16 67)(2 73 17 68)(3 74 18 69)(4 75 19 70)(5 76 20 61)(6 77 11 62)(7 78 12 63)(8 79 13 64)(9 80 14 65)(10 71 15 66)(21 92 145 117)(22 93 146 118)(23 94 147 119)(24 95 148 120)(25 96 149 111)(26 97 150 112)(27 98 141 113)(28 99 142 114)(29 100 143 115)(30 91 144 116)(31 54 44 83)(32 55 45 84)(33 56 46 85)(34 57 47 86)(35 58 48 87)(36 59 49 88)(37 60 50 89)(38 51 41 90)(39 52 42 81)(40 53 43 82)(101 153 125 138)(102 154 126 139)(103 155 127 140)(104 156 128 131)(105 157 129 132)(106 158 130 133)(107 159 121 134)(108 160 122 135)(109 151 123 136)(110 152 124 137)
(1 93 11 98)(2 117 12 112)(3 91 13 96)(4 115 14 120)(5 99 15 94)(6 113 16 118)(7 97 17 92)(8 111 18 116)(9 95 19 100)(10 119 20 114)(21 85 26 51)(22 55 27 89)(23 83 28 59)(24 53 29 87)(25 81 30 57)(31 121 49 126)(32 106 50 101)(33 129 41 124)(34 104 42 109)(35 127 43 122)(36 102 44 107)(37 125 45 130)(38 110 46 105)(39 123 47 128)(40 108 48 103)(52 144 86 149)(54 142 88 147)(56 150 90 145)(58 148 82 143)(60 146 84 141)(61 134 71 139)(62 158 72 153)(63 132 73 137)(64 156 74 151)(65 140 75 135)(66 154 76 159)(67 138 77 133)(68 152 78 157)(69 136 79 131)(70 160 80 155)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,45,16,32)(2,46,17,33)(3,47,18,34)(4,48,19,35)(5,49,20,36)(6,50,11,37)(7,41,12,38)(8,42,13,39)(9,43,14,40)(10,44,15,31)(21,132,145,157)(22,133,146,158)(23,134,147,159)(24,135,148,160)(25,136,149,151)(26,137,150,152)(27,138,141,153)(28,139,142,154)(29,140,143,155)(30,131,144,156)(51,63,90,78)(52,64,81,79)(53,65,82,80)(54,66,83,71)(55,67,84,72)(56,68,85,73)(57,69,86,74)(58,70,87,75)(59,61,88,76)(60,62,89,77)(91,128,116,104)(92,129,117,105)(93,130,118,106)(94,121,119,107)(95,122,120,108)(96,123,111,109)(97,124,112,110)(98,125,113,101)(99,126,114,102)(100,127,115,103), (1,72,16,67)(2,73,17,68)(3,74,18,69)(4,75,19,70)(5,76,20,61)(6,77,11,62)(7,78,12,63)(8,79,13,64)(9,80,14,65)(10,71,15,66)(21,92,145,117)(22,93,146,118)(23,94,147,119)(24,95,148,120)(25,96,149,111)(26,97,150,112)(27,98,141,113)(28,99,142,114)(29,100,143,115)(30,91,144,116)(31,54,44,83)(32,55,45,84)(33,56,46,85)(34,57,47,86)(35,58,48,87)(36,59,49,88)(37,60,50,89)(38,51,41,90)(39,52,42,81)(40,53,43,82)(101,153,125,138)(102,154,126,139)(103,155,127,140)(104,156,128,131)(105,157,129,132)(106,158,130,133)(107,159,121,134)(108,160,122,135)(109,151,123,136)(110,152,124,137), (1,93,11,98)(2,117,12,112)(3,91,13,96)(4,115,14,120)(5,99,15,94)(6,113,16,118)(7,97,17,92)(8,111,18,116)(9,95,19,100)(10,119,20,114)(21,85,26,51)(22,55,27,89)(23,83,28,59)(24,53,29,87)(25,81,30,57)(31,121,49,126)(32,106,50,101)(33,129,41,124)(34,104,42,109)(35,127,43,122)(36,102,44,107)(37,125,45,130)(38,110,46,105)(39,123,47,128)(40,108,48,103)(52,144,86,149)(54,142,88,147)(56,150,90,145)(58,148,82,143)(60,146,84,141)(61,134,71,139)(62,158,72,153)(63,132,73,137)(64,156,74,151)(65,140,75,135)(66,154,76,159)(67,138,77,133)(68,152,78,157)(69,136,79,131)(70,160,80,155)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,45,16,32)(2,46,17,33)(3,47,18,34)(4,48,19,35)(5,49,20,36)(6,50,11,37)(7,41,12,38)(8,42,13,39)(9,43,14,40)(10,44,15,31)(21,132,145,157)(22,133,146,158)(23,134,147,159)(24,135,148,160)(25,136,149,151)(26,137,150,152)(27,138,141,153)(28,139,142,154)(29,140,143,155)(30,131,144,156)(51,63,90,78)(52,64,81,79)(53,65,82,80)(54,66,83,71)(55,67,84,72)(56,68,85,73)(57,69,86,74)(58,70,87,75)(59,61,88,76)(60,62,89,77)(91,128,116,104)(92,129,117,105)(93,130,118,106)(94,121,119,107)(95,122,120,108)(96,123,111,109)(97,124,112,110)(98,125,113,101)(99,126,114,102)(100,127,115,103), (1,72,16,67)(2,73,17,68)(3,74,18,69)(4,75,19,70)(5,76,20,61)(6,77,11,62)(7,78,12,63)(8,79,13,64)(9,80,14,65)(10,71,15,66)(21,92,145,117)(22,93,146,118)(23,94,147,119)(24,95,148,120)(25,96,149,111)(26,97,150,112)(27,98,141,113)(28,99,142,114)(29,100,143,115)(30,91,144,116)(31,54,44,83)(32,55,45,84)(33,56,46,85)(34,57,47,86)(35,58,48,87)(36,59,49,88)(37,60,50,89)(38,51,41,90)(39,52,42,81)(40,53,43,82)(101,153,125,138)(102,154,126,139)(103,155,127,140)(104,156,128,131)(105,157,129,132)(106,158,130,133)(107,159,121,134)(108,160,122,135)(109,151,123,136)(110,152,124,137), (1,93,11,98)(2,117,12,112)(3,91,13,96)(4,115,14,120)(5,99,15,94)(6,113,16,118)(7,97,17,92)(8,111,18,116)(9,95,19,100)(10,119,20,114)(21,85,26,51)(22,55,27,89)(23,83,28,59)(24,53,29,87)(25,81,30,57)(31,121,49,126)(32,106,50,101)(33,129,41,124)(34,104,42,109)(35,127,43,122)(36,102,44,107)(37,125,45,130)(38,110,46,105)(39,123,47,128)(40,108,48,103)(52,144,86,149)(54,142,88,147)(56,150,90,145)(58,148,82,143)(60,146,84,141)(61,134,71,139)(62,158,72,153)(63,132,73,137)(64,156,74,151)(65,140,75,135)(66,154,76,159)(67,138,77,133)(68,152,78,157)(69,136,79,131)(70,160,80,155) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,45,16,32),(2,46,17,33),(3,47,18,34),(4,48,19,35),(5,49,20,36),(6,50,11,37),(7,41,12,38),(8,42,13,39),(9,43,14,40),(10,44,15,31),(21,132,145,157),(22,133,146,158),(23,134,147,159),(24,135,148,160),(25,136,149,151),(26,137,150,152),(27,138,141,153),(28,139,142,154),(29,140,143,155),(30,131,144,156),(51,63,90,78),(52,64,81,79),(53,65,82,80),(54,66,83,71),(55,67,84,72),(56,68,85,73),(57,69,86,74),(58,70,87,75),(59,61,88,76),(60,62,89,77),(91,128,116,104),(92,129,117,105),(93,130,118,106),(94,121,119,107),(95,122,120,108),(96,123,111,109),(97,124,112,110),(98,125,113,101),(99,126,114,102),(100,127,115,103)], [(1,72,16,67),(2,73,17,68),(3,74,18,69),(4,75,19,70),(5,76,20,61),(6,77,11,62),(7,78,12,63),(8,79,13,64),(9,80,14,65),(10,71,15,66),(21,92,145,117),(22,93,146,118),(23,94,147,119),(24,95,148,120),(25,96,149,111),(26,97,150,112),(27,98,141,113),(28,99,142,114),(29,100,143,115),(30,91,144,116),(31,54,44,83),(32,55,45,84),(33,56,46,85),(34,57,47,86),(35,58,48,87),(36,59,49,88),(37,60,50,89),(38,51,41,90),(39,52,42,81),(40,53,43,82),(101,153,125,138),(102,154,126,139),(103,155,127,140),(104,156,128,131),(105,157,129,132),(106,158,130,133),(107,159,121,134),(108,160,122,135),(109,151,123,136),(110,152,124,137)], [(1,93,11,98),(2,117,12,112),(3,91,13,96),(4,115,14,120),(5,99,15,94),(6,113,16,118),(7,97,17,92),(8,111,18,116),(9,95,19,100),(10,119,20,114),(21,85,26,51),(22,55,27,89),(23,83,28,59),(24,53,29,87),(25,81,30,57),(31,121,49,126),(32,106,50,101),(33,129,41,124),(34,104,42,109),(35,127,43,122),(36,102,44,107),(37,125,45,130),(38,110,46,105),(39,123,47,128),(40,108,48,103),(52,144,86,149),(54,142,88,147),(56,150,90,145),(58,148,82,143),(60,146,84,141),(61,134,71,139),(62,158,72,153),(63,132,73,137),(64,156,74,151),(65,140,75,135),(66,154,76,159),(67,138,77,133),(68,152,78,157),(69,136,79,131),(70,160,80,155)]])

62 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L5A5B8A8B8C8D10A···10N20A···20X
order12222244444444444455888810···1020···20
size111122222244442020202022202020202···24···4

62 irreducible representations

dim1111112222222244
type+++++++++-+-
imageC1C2C2C2C2C4D4D4D5D10Dic5D10C5⋊D4C5⋊D4C8.C22C20.C23
kernel(Q8×C10)⋊16C4Q8⋊Dic5C2×C4.Dic5C23.21D10Q8×C2×C10Q8×C10C2×C20C22×C10C22×Q8C22×C4C2×Q8C2×Q8C2×C4C23C10C2
# reps14111831228412428

Matrix representation of (Q8×C10)⋊16C4 in GL6(𝔽41)

100000
010000
004000
000400
00380100
00038010
,
4000000
0400000
000100
0040000
000001
0000400
,
33220000
4080000
0072700
00273400
001710147
001024727
,
33220000
2580000
0010390
0001039
0000400
0000040

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,38,0,0,0,0,4,0,38,0,0,0,0,10,0,0,0,0,0,0,10],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[33,40,0,0,0,0,22,8,0,0,0,0,0,0,7,27,17,10,0,0,27,34,10,24,0,0,0,0,14,7,0,0,0,0,7,27],[33,25,0,0,0,0,22,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,39,0,40,0,0,0,0,39,0,40] >;

(Q8×C10)⋊16C4 in GAP, Magma, Sage, TeX

(Q_8\times C_{10})\rtimes_{16}C_4
% in TeX

G:=Group("(Q8xC10):16C4");
// GroupNames label

G:=SmallGroup(320,852);
// by ID

G=gap.SmallGroup(320,852);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,422,387,184,1684,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^4=d^4=1,c^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^2,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=a^5*b^-1*c>;
// generators/relations

׿
×
𝔽