Extensions 1→N→G→Q→1 with N=C4 and Q=C4.Dic5

Direct product G=NxQ with N=C4 and Q=C4.Dic5
dρLabelID
C4xC4.Dic5160C4xC4.Dic5320,549

Semidirect products G=N:Q with N=C4 and Q=C4.Dic5
extensionφ:Q→Aut NdρLabelID
C4:1(C4.Dic5) = C20:7M4(2)φ: C4.Dic5/C5:2C8C2 ⊆ Aut C4160C4:1(C4.Dic5)320,639
C4:2(C4.Dic5) = C20:13M4(2)φ: C4.Dic5/C2xC20C2 ⊆ Aut C4160C4:2(C4.Dic5)320,551

Non-split extensions G=N.Q with N=C4 and Q=C4.Dic5
extensionφ:Q→Aut NdρLabelID
C4.1(C4.Dic5) = C20.57D8φ: C4.Dic5/C5:2C8C2 ⊆ Aut C4160C4.1(C4.Dic5)320,92
C4.2(C4.Dic5) = C20.26Q16φ: C4.Dic5/C5:2C8C2 ⊆ Aut C4320C4.2(C4.Dic5)320,93
C4.3(C4.Dic5) = C42.210D10φ: C4.Dic5/C5:2C8C2 ⊆ Aut C4320C4.3(C4.Dic5)320,651
C4.4(C4.Dic5) = C40:6C8φ: C4.Dic5/C2xC20C2 ⊆ Aut C4320C4.4(C4.Dic5)320,15
C4.5(C4.Dic5) = C40:5C8φ: C4.Dic5/C2xC20C2 ⊆ Aut C4320C4.5(C4.Dic5)320,16
C4.6(C4.Dic5) = C20.45C42φ: C4.Dic5/C2xC20C2 ⊆ Aut C4804C4.6(C4.Dic5)320,24
C4.7(C4.Dic5) = C40.D4φ: C4.Dic5/C2xC20C2 ⊆ Aut C4804C4.7(C4.Dic5)320,111
C4.8(C4.Dic5) = C42.7Dic5φ: C4.Dic5/C2xC20C2 ⊆ Aut C4160C4.8(C4.Dic5)320,553
C4.9(C4.Dic5) = C42.279D10central extension (φ=1)320C4.9(C4.Dic5)320,12
C4.10(C4.Dic5) = C20:3C16central extension (φ=1)320C4.10(C4.Dic5)320,20
C4.11(C4.Dic5) = C40.91D4central extension (φ=1)160C4.11(C4.Dic5)320,107
C4.12(C4.Dic5) = C42.6Dic5central extension (φ=1)160C4.12(C4.Dic5)320,552

׿
x
:
Z
F
o
wr
Q
<