metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C5⋊2C8, C4.2D5, C2.Dic5, C10.2C4, C20.2C2, SmallGroup(40,1)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C5⋊2C8 |
Generators and relations for C5⋊2C8
G = < a,b | a5=b8=1, bab-1=a-1 >
Character table of C5⋊2C8
class | 1 | 2 | 4A | 4B | 5A | 5B | 8A | 8B | 8C | 8D | 10A | 10B | 20A | 20B | 20C | 20D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 5 | 5 | 5 | 5 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | i | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | i | -i | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ5 | 1 | -1 | i | -i | 1 | 1 | ζ87 | ζ85 | ζ83 | ζ8 | -1 | -1 | i | -i | i | -i | linear of order 8 |
ρ6 | 1 | -1 | i | -i | 1 | 1 | ζ83 | ζ8 | ζ87 | ζ85 | -1 | -1 | i | -i | i | -i | linear of order 8 |
ρ7 | 1 | -1 | -i | i | 1 | 1 | ζ8 | ζ83 | ζ85 | ζ87 | -1 | -1 | -i | i | -i | i | linear of order 8 |
ρ8 | 1 | -1 | -i | i | 1 | 1 | ζ85 | ζ87 | ζ8 | ζ83 | -1 | -1 | -i | i | -i | i | linear of order 8 |
ρ9 | 2 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ10 | 2 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ11 | 2 | 2 | -2 | -2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ12 | 2 | 2 | -2 | -2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ13 | 2 | -2 | -2i | 2i | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | ζ43ζ53+ζ43ζ52 | ζ4ζ53+ζ4ζ52 | ζ43ζ54+ζ43ζ5 | ζ4ζ54+ζ4ζ5 | complex faithful, Schur index 2 |
ρ14 | 2 | -2 | 2i | -2i | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | ζ4ζ54+ζ4ζ5 | ζ43ζ54+ζ43ζ5 | ζ4ζ53+ζ4ζ52 | ζ43ζ53+ζ43ζ52 | complex faithful, Schur index 2 |
ρ15 | 2 | -2 | -2i | 2i | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | ζ43ζ54+ζ43ζ5 | ζ4ζ54+ζ4ζ5 | ζ43ζ53+ζ43ζ52 | ζ4ζ53+ζ4ζ52 | complex faithful, Schur index 2 |
ρ16 | 2 | -2 | 2i | -2i | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | ζ4ζ53+ζ4ζ52 | ζ43ζ53+ζ43ζ52 | ζ4ζ54+ζ4ζ5 | ζ43ζ54+ζ43ζ5 | complex faithful, Schur index 2 |
(1 35 9 32 24)(2 17 25 10 36)(3 37 11 26 18)(4 19 27 12 38)(5 39 13 28 20)(6 21 29 14 40)(7 33 15 30 22)(8 23 31 16 34)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
G:=sub<Sym(40)| (1,35,9,32,24)(2,17,25,10,36)(3,37,11,26,18)(4,19,27,12,38)(5,39,13,28,20)(6,21,29,14,40)(7,33,15,30,22)(8,23,31,16,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)>;
G:=Group( (1,35,9,32,24)(2,17,25,10,36)(3,37,11,26,18)(4,19,27,12,38)(5,39,13,28,20)(6,21,29,14,40)(7,33,15,30,22)(8,23,31,16,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40) );
G=PermutationGroup([[(1,35,9,32,24),(2,17,25,10,36),(3,37,11,26,18),(4,19,27,12,38),(5,39,13,28,20),(6,21,29,14,40),(7,33,15,30,22),(8,23,31,16,34)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)]])
C5⋊2C8 is a maximal subgroup of
C5⋊C16 C8×D5 C8⋊D5 C4.Dic5 D4⋊D5 D4.D5 Q8⋊D5 C5⋊Q16 C15⋊3C8 C25⋊2C8 C52⋊7C8 C52⋊3C8 C35⋊3C8 (C3×C15)⋊9C8 C5⋊2F9 C55⋊3C8
C5⋊2C8 is a maximal quotient of
C5⋊2C16 C15⋊3C8 C25⋊2C8 C52⋊7C8 C52⋊3C8 C35⋊3C8 (C3×C15)⋊9C8 C5⋊2F9 C55⋊3C8
Matrix representation of C5⋊2C8 ►in GL2(𝔽29) generated by
11 | 21 |
9 | 12 |
0 | 17 |
1 | 0 |
G:=sub<GL(2,GF(29))| [11,9,21,12],[0,1,17,0] >;
C5⋊2C8 in GAP, Magma, Sage, TeX
C_5\rtimes_2C_8
% in TeX
G:=Group("C5:2C8");
// GroupNames label
G:=SmallGroup(40,1);
// by ID
G=gap.SmallGroup(40,1);
# by ID
G:=PCGroup([4,-2,-2,-2,-5,8,21,515]);
// Polycyclic
G:=Group<a,b|a^5=b^8=1,b*a*b^-1=a^-1>;
// generators/relations
Export
Subgroup lattice of C5⋊2C8 in TeX
Character table of C5⋊2C8 in TeX