Extensions 1→N→G→Q→1 with N=C4 and Q=C4xDic5

Direct product G=NxQ with N=C4 and Q=C4xDic5
dρLabelID
C42xDic5320C4^2xDic5320,557

Semidirect products G=N:Q with N=C4 and Q=C4xDic5
extensionφ:Q→Aut NdρLabelID
C4:1(C4xDic5) = C4:C4xDic5φ: C4xDic5/C2xDic5C2 ⊆ Aut C4320C4:1(C4xDic5)320,602
C4:2(C4xDic5) = C4xC4:Dic5φ: C4xDic5/C2xC20C2 ⊆ Aut C4320C4:2(C4xDic5)320,561

Non-split extensions G=N.Q with N=C4 and Q=C4xDic5
extensionφ:Q→Aut NdρLabelID
C4.1(C4xDic5) = C20.31C42φ: C4xDic5/C2xDic5C2 ⊆ Aut C4320C4.1(C4xDic5)320,87
C4.2(C4xDic5) = C20.32C42φ: C4xDic5/C2xDic5C2 ⊆ Aut C480C4.2(C4xDic5)320,90
C4.3(C4xDic5) = C20.33C42φ: C4xDic5/C2xDic5C2 ⊆ Aut C480C4.3(C4xDic5)320,113
C4.4(C4xDic5) = C20.34C42φ: C4xDic5/C2xDic5C2 ⊆ Aut C4160C4.4(C4xDic5)320,116
C4.5(C4xDic5) = C20.35C42φ: C4xDic5/C2xDic5C2 ⊆ Aut C4160C4.5(C4xDic5)320,624
C4.6(C4xDic5) = M4(2)xDic5φ: C4xDic5/C2xDic5C2 ⊆ Aut C4160C4.6(C4xDic5)320,744
C4.7(C4xDic5) = C20.37C42φ: C4xDic5/C2xDic5C2 ⊆ Aut C4160C4.7(C4xDic5)320,749
C4.8(C4xDic5) = C42:6Dic5φ: C4xDic5/C2xC20C2 ⊆ Aut C480C4.8(C4xDic5)320,81
C4.9(C4xDic5) = C20.39C42φ: C4xDic5/C2xC20C2 ⊆ Aut C4320C4.9(C4xDic5)320,109
C4.10(C4xDic5) = C20.40C42φ: C4xDic5/C2xC20C2 ⊆ Aut C4160C4.10(C4xDic5)320,110
C4.11(C4xDic5) = C4xC4.Dic5φ: C4xDic5/C2xC20C2 ⊆ Aut C4160C4.11(C4xDic5)320,549
C4.12(C4xDic5) = C20.42C42φ: C4xDic5/C2xC20C2 ⊆ Aut C4160C4.12(C4xDic5)320,728
C4.13(C4xDic5) = C4xC5:2C16central extension (φ=1)320C4.13(C4xDic5)320,18
C4.14(C4xDic5) = C40.10C8central extension (φ=1)320C4.14(C4xDic5)320,19
C4.15(C4xDic5) = C16xDic5central extension (φ=1)320C4.15(C4xDic5)320,58
C4.16(C4xDic5) = C80:17C4central extension (φ=1)320C4.16(C4xDic5)320,60
C4.17(C4xDic5) = C2xC4xC5:2C8central extension (φ=1)320C4.17(C4xDic5)320,547
C4.18(C4xDic5) = C2xC42.D5central extension (φ=1)320C4.18(C4xDic5)320,548
C4.19(C4xDic5) = C42:4Dic5central extension (φ=1)320C4.19(C4xDic5)320,559
C4.20(C4xDic5) = C2xC8xDic5central extension (φ=1)320C4.20(C4xDic5)320,725
C4.21(C4xDic5) = C2xC40:8C4central extension (φ=1)320C4.21(C4xDic5)320,727
C4.22(C4xDic5) = C20.45C42central stem extension (φ=1)804C4.22(C4xDic5)320,24
C4.23(C4xDic5) = C80:C4central stem extension (φ=1)804C4.23(C4xDic5)320,70
C4.24(C4xDic5) = C42:1Dic5central stem extension (φ=1)804C4.24(C4xDic5)320,89
C4.25(C4xDic5) = C23.9D20central stem extension (φ=1)804C4.25(C4xDic5)320,115
C4.26(C4xDic5) = C20.51C42central stem extension (φ=1)804C4.26(C4xDic5)320,118

׿
x
:
Z
F
o
wr
Q
<